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ABSTRACT

This thesis explores using a direct pseudospectral method for the solution of
optimal control problems with mixed dynamics. An easy to use MATLAB optimization
package known as DIDO is used to obtain the solutions. The modeling of both low thrust
interplanetary trajectories as well as aerocapture trajectories is detailed and the solutions
for low thrust minimum time and minimum fuel trgjectories are explored with particular
emphasis on verification of the optimality of the obtained solution. Optimal aerocpature
trgectories are solved for rotating atmospheres over a range of arrival V-infinities.
Solutions are obtained using various performance indexes including minimum fuel,
minimum heat load, and minimum total aerocapture mass. Finaly, the problem
formulation and solutions for the mixed dynamic problem of low thrust trgjectories with a
terminal aerocapture maneuver is addressed yielding new trajectories maximizing the
total scientific mass at arrival.
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l. INTRODUCTION

In recent years, two developing concepts have been considered by mission
designers to reduce the required propellant mass for interplanetary missions, thus
allowing for increased mass of scientific payloads. Low thrust propulsion alows for
greatly improved fuel efficiency and has the potential to increase payload mass fractions
as well as providing trajectories not possible with impulsive thrust. Aerocapture is the
careful management of a hypersonic atmospheric pass prior to orbit insertion to remove
excess arrival velocity of a spacecraft obviating the need for a large propulsive capture
maneuver. While aerocapture greatly reduces the propellant mass required for orbit
insertion, the large heat loads generated in the atmospheric portion of the traectory
require the addition of a possibly massive thermal protection system (TPS). Both low
thrust and aerocapture trajectories are highly non-linear with no closed-form solutions for
their optimal open-loop control histories. This thesis addresses the feasibility of
simultaneously optimizing a low thrust interplanetary trajectory with a termina
aerocapture maneuver to maximize the fina scientific payload mass. In addition, the
characteristics of optimal low thrust and aerocapture trgectories are explored with
particular emphasis on techniques for the verification of the optimality of the obtained

solutions.
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II.  LOW THRUST MODELING

A. COORDINATE SYSTEM

Polar coordinates were chosen for the low thrust portion of the trajectory design
optimization. With the exception of the planets Mercury and Pluto, the orbits of the
remaining planets all lie within 3.4 inclination of the solar ecliptic. For the purposes of
this thesis, the small angle approximation has been used to assume that all planets' orbits
liein the solar ecliptic. Figure 1 depicts the coordinate system used for the low thrust
portion.

Figurel: Low Thrust Coordinate System



B. EQUATIONSOF MOTION

The state vector of a vehicle conducting a generic thrusting orbit transfer can be

givenas x =[r q,V,,Vv,, M where,

r © radia position from central body
q ° transfer angle

Vr ° radial velocity component

Vi ° transverse velocity component

m © vehicle mass

The equations of motion for a constant thrust orbit transfer are given in [Ref.1]
and can be modified for non-continuous thrust as follows:

= = 1
ol 1)
t r
dv v? m Tsinh
= D 3)
dt rr m
%:-MJFTCOSh (%)
dt r m
dm T
= =__ 5
dt Vv ©)

where

m © gravitational constant of central body
T © thrust magnitude

h © thrust direction angle

Ve ° exhaust velocity



C. GRAVITATIONAL MODEL

Only the gravitational effects of the central body are considered in this work.
Higher fidelity models include the gravitational effects of other celestial bodies thus
enabling the discovery of gravity assist trgjectories. For the case of genera planet-to-
planet orbit transfer, the vehicle is far from other gravitational bodies for the bulk of the
trgjectory. By assuming that the trajectory begins and ends at the boundary of the sphere
of influence (SOI) with an escape velocity greater than or equal to zero, the gravitational
effects of the origin and target planet can be neglected completely.

For the inner, less massive planets, the SOI are reasonably small when compared
to the orbit radii. Eqgn. (6) [Ref. 2] approximates SOI radius as a function of the mean

orbit radius and the ratio of masses between the gravitating bodies.

planet ™

& rnsun ; rsun— planet (6)

aam
»

r-SOI

Note that ro, approximately scaleslinearly with the distance to the sun. Despite the fact
that the SOI radii of the other planets increase with distance from the sun, thisincrease is
roughly proportional to the increase in tragectory length. Considering this, it is
reasonabl e to assume that the origin and target planet can be thought of as non-gravitating

point masses, reducing the problem to a two-body problem. Table 1 gives the
approximate SOI radius for selected planets.



Planet SOI Radius (km) SOI Radius (AU)
Mercury 1.13" 10° 7.55" 10°*
Venus 6.17° 10° 412" 10°°

Earth 9.24" 10° 6.18" 10°°

Mars 574" 10° 3.84" 10°°
Jupiter 4.83° 10’ 0.32

Neptune 8.67 10’ 0.58

Table1: SOI Radiusfor Selected Planets (adapted from [Ref. 2])

D. LAUNCH VEHICLE MODEL

A launch vehicle's performance is generally measured by the amount of mass it
can place in agiven orbit around the origin planet. For interplanetary trajectories, we are
concerned with the trade-off between launch mass and the sgquare of the escape velocity
(know cryptically as Gg). [Ref. 2]. The launch performance may be fitted to a curve to be
used to estimate launch mass from G and vice versa. For this work, all trajectories will
begin at the zero G point (i.e. maximum launch mass with escape energy, equivalent to a
parabolic escape).

E. PROPUL SION MODEL

The low thrust propulsion system used for this research is modeled after the
NASA Solar electric propulsion Technology Applications Readiness project (NSTAR).
This engine, employed in the Deep Space | (DSL) mission [Ref. 4], uses a single xenon
ion propulsion system. This engineis 30 cm in diameter with a mass of approximately 8
kg. The engine delivers approximately 92 mN of thrust with a specific impulse of 3300
seconds. To achieve higher thrust levels, multiple engines can be used. The engine's
specific impulse varies with the output thrust which is itself a function of the electrical

power delivered to the engine. This model was simplified to assume a constant specific
6



impulse over the entire thrust range. Moreover, no limitations were placed on the
available power provided to the engine. This assumption is valid provided a “near-

limitless’ source of power is available such as Nuclear-Electric Propulsion (NEP).

The propulsion model can be modified to account for “limited” power sources
such as Solar-Electric Propulsion (SEP) by constraining the power available to the engine
using

hsolar R Aﬁrra
Pt = 5

avail — r
au

)

where

Paail  © €electrical power available to the engines

Po ° reference solar incident power (power incident at 1 AU) in W/n?
Aaray © SOlar array areain nt

hslar  © power converting efficiency of the solar array

ras  © vehicledistance fromthe sun (in AU)

The power available can then be used to constrain the maximum thrust available at a

given distance from the sun.

F. NON-DIMENSIONALIZATION

Non-dimensionalization (or scaling) is the reformulation of the problem such that
all the optimizable parameters as well as the cost function assume values close to unity
over most of the domain of interest. When not scaled properly, the problem may become
“ill-conditioned” and the effects of numerical artifacts as common as round-off error can
begin to impact the solution. Very poorly scaled problems may even behave as though
there are singularities when in fact there are none. Problems that have not been scaled
are susceptible to various ailments ranging from slow convergence to complete failure to
converge. Betts [Ref. 5] gives many tips for the scaling of problems and points out that
even when aproblem iswell scaled at one point, it may be scaled poorly at another point.



A simple non-dimensionalization method is to smply divide a state variable x by
a representative reference value for that variable [Ref. 6]. The low thrust problem may
be normalized in this way using a modified version of the approach implemented by
Bryson [Ref. 1]. Let adistance unit be defined as1 AU and let avelocity unit be defined

asthe circular velocity of the earth. Thus we have

Ugs = Ry (8)

- M
uve,_/ 9
R ©

where
Ugs © distance unit (1 AU)
Uw  © velocity unit (circular velocity at 1 AU)

Using this convention, a given radius r, could be non-dimensionalized as follows

;
F=— 10
Y (10)

dist

where an over-bar has been used to denote a non-dimensional variable. Continuing, the

natural unit of timeis simply

U. = dist (11)

where
Uime © time unit

Note that for the above choice of distance and velocity units there are 2 time

units per orbit. Now choosing the initial vehicle mass as our mass unit we have
U,.=Mm (12)
where

Um ° mass unit



which completes the set of fundamental units. These particular choices of units are
known collectively as canonical units. [Ref. 7] One advantage of using canonical units

for astrodynamic problems is that the gravitational parameter m becomes one,

simplifying many equations. A second advantage is that if only the above units (or
combinations of the above units) are used to dimensionalize all the states, then the
equations of motion take on exactly the same form as their dimensional counterparts
provided there are no constant factors in any term which must be corrected (asis the case
with the gravitational parameter which fortuitoudly is“corrected” to one). Whileitistrue
that the combinations of the above relations can be used to non-dimensionalize any
parameter, there is no guarantee that the result will also be well scaled. In fact, the low

thrust problem illustrates this fact nicely for particularly low thrusts.

Consider a 600 kg vehicle with one NSTAR engine producing 92 mN of thrust.

Using the units above, it would seem reasonabl e to assume that

u_ U,
U - mass ™ dist 13
thrust U timez ( )
Substituting the values of the canonical we get
(600kg)(L.496" 10*m)
thrust = = 39N (14)

(5.023" 10°)°

Thus for thisto be a useful unit for non-dimensionalizing thrust, we require our vehicle's
thrust output to be on the order of 4 N. For realistic low thrust systems, this value of
thrust unit may be too high. A better choice would be to define a thrust unit as the
maximum thrust produced by the engine. This guarantees that the normalized thrust
magnitude will fall between zero and one but requires the equations of motion to be

modified slightly asfollows:

ar

=V 15

s [ (15)
dq_ \V

ke BPRA § 16

dt 1 (16)



where

v _ VY N ZT cosh
dt r m
dm__ 7T
A
7z = UthrustU time
UdistheI

17)

(18)

(19)

(20)

Clearly multiplying al the non-dimensional thrust terms in the equations of

motion by this factor effectively accomplishes the same objective as normalizing thrust

with purely canonical units. However, the difference is that domain of the thrust control

is now well-scaled, and the conversions are taking place internal to the equations where

proper scaling is not as important.
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I1l. AEROCAPTURE MODELING

A. COORDINATE SYSTEMS

The coordinate systems chosen for aerocapture are the same as those used in
existing developed tools such as ACAPS [Refs. 8,9] such that data could more easily be
shared between programs.

1. Position Vector

The vehicle's position vector is defined in the planet centered fixed (PCF)
reference frame. This coordinate system is similar to a planet centered inertial (PCl)
coordinate system except that the primary axisis aligned and rotates with a meridian line
on the planet’ s surface [Ref 7]. The angular velocity of the PCF frame with respect to the
PCI frame is denoted byW. As shown in Figure 2, the position vector is defined as

r=[r,q.f ]Twhere

r © distance between origin and vehicle center of mass
q © longitude as measured positive in an easterly direction
f ° |atitude measured positive up from the equator

11
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Figure2: Aerocapture Position Coordinate System

Because the targeting of orbits with specific right ascensions is beyond the scope
of this thesis and the equations of motion are invariant in longitude, it is convenient to

define the longitude at atmospheric entry to be zero.

2. Velocity Vector

The velocity vector is measured in polar coordinatesrelative to the REN (Radius-
East-North) frame. Asshown in Figure 3, the REN frame is centered on the vehicle with
the primary axis aligned with the extended radius vector. The tertiary axis is orthogonal
and aligned toward the northern pole of the spherical coordinate system and the
intermediate axis is mutually orthogonal and oriented easterly, completing the right-
handed triad.

12



Radial
. Velocity Vector

Figure 3. Aerocapture Velocity Coordinate System (REN Frame)

Within this frame, the velocity vector is represented by a magnitude and two

angles, Voo =[vy ,g] where
% © vehicle speed
y ° heading angle as measured counter-clockwise from easterly

g ° flight path angle as measures positive up from EN plane

It is important to note that the velocity vector represented in this frame is non-

inertial unless W=0 in which case PCF = PCI. For reasons that will become apparent

later, it is sometimes mnvenient to express the vehicle's inertial velocity in the local

REN frame. This will be denoted by V.., =[V,Y,G|" where capital Greek letters have

replaced their corresponding lower-cased non-inertial symbols.
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3. Frenet Frame

The Frenet frame (sometimes referred to as the NTW frame [Ref 7]) is useful for
resolving vectors into tangent, normal and bi-normal components with respect to the
vehicle's path. At agiven time, the tangent component is tangent to the vehicle trajectory
(alternately paralel to the velocity vector). The norma component lies in the plane of
the orbit but perpendicular to the tangent component and the bi-normal component is
normal to the orbit completing the right-hand triad. These components are identified by
the subscriptss, n, and w respectively. The Frenet frameis a natural choice for resolving
aerodynamic forces on a body as drag always acts in the negative direction tangent to the
flight path and the lift vector will always lie in the normal/bi-normal plane. [Ref 7] That
is to say that for a rotating atmosphere (fixed to the PCF frame) the Frenet axes are

equivalent to wind axes.

B. EQUATIONSOF MOTION

For the generation of optimal tragjectories, athree degree of freedom (DOF) model

is sufficient to describe the spacecraft dynamics. The state of the vehicle is represented
by the Zdimensional vector x =[r,q.f ,vy ,g] consisting of radial position, longitude,

latitude, speed, heading angle, and flight path angle. The equations of motion for a non-
rotating atmosphere with a generic gravity model are given by [Ref. 10] as

dr .

—=vsIn 21

m g (21)
dg _ vcosg cosy (22)
dt r cosf
df _ Veosg siny (23)
dt r

dv

—=a,+ 24

a2t (24)

LA =20 Xcosg cosy tanf (25)

dt vcosg r

14



d_gzan+gn +VCOSg (26)
dt Y r

where in the above equations a,, a,, and a, are the external accelerations resolved in

the Frenet frame.

1. Rotational Effects

For the higher-fidelity case of arotating atmosphere, Egs.(9) through (11) must be

modified to account for non-inertial centrifugal and Coriolis forces.

dv
—=a +qg.+cf 27
L Tatgd, (27)
Y 8t Voosgeosy tanf +cf, +cq (28)
dt vcosg r
d9 _&+9, , vcosy +cf, +co, (29)
dt Y r

where the cf and co terms represent centrifugal and Corilolis contributions respectively as

given by
cf, =Wrcosf (sing cosf - cosgsinf siny ) (30)
Wr o .
cf, =- sinf cosf cosy (31
VCosg
cg, =2W(tangcosf siny - sinf ) (32)
o =T cost f +sngsinf s 33
o —Tcos (cosgcos sngsinf siny ) (33
co, = 2Wecosf cosy (34)

and W isthe planet’ s angular rotation rate about its pole.



2. Aerodynamic Forces

The aerodynamic forces of lift and drag are given [Ref. 11] as
L=q,SC (a) (35)
D=q,SC, (a) (36)

where C, and Cp are the lift and drag coefficients and are in general a function of angle
of attack (a ) and S is a reference area associated with the aerodynamic coefficients.
The angle of attack is defined as the angle between vehicle's body axis and the velocity

vector as shown in Figure 4,

Radial
A

Body Axis

Velocity

Normal
Plane

Nadir

Figure4: Definition of Angle of Attack and Flight Path Angle

The dynamic pressure, qq is given by
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gy ==r (r)V (37)

wherer isthe atmospheric density which is generally a function of atitude as given by

the atmospheric model.

3. External Accdlerations

Theterms a,, a,, and a, represent the externa accelerations resolved in the

tangential, normal and bi-normal directions. These accelerations are the result of the
aerodynamic forces and vary with bank angle, d which is defined as a body rotation about

the vehicle's velocity vector as show in Figure 5.

Velocity

(or tangent)

Bi-normal

Figure5: Definition of Bank Angle
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These accelerations can be expressed as function of the controls, mass and

aerodynamic forces as

D

a =-— (38)
m

_ L cosd (39)
m

a = Lsind (40)
m

Note that the total acceleration on the vehicle can be determined from these

equations by using

la] =& +a,°+a,” (41)

and the total g-load becomes

g- load = el (42)
%

C. GRAVITATIONAL MODEL

For a simple inverse-square gravity model, the gravitational accelerations can be

converted from their more familiar spherical form

m

99,3 (43)
9, =0 (44)
g =0 (45)
to the Frenet frame using Egn. (215) becoming
g, =-gcosg (46)
g, =-9gsing (47)
9, =0 (48)
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Increased fidelity gravitational models, such as those including zona harmonics

can be incorporated in asimilar manner [Ref. 9 but is beyond the scope of this work.

D. ATMOSPHERIC MODEL

Anderson shows [Ref. 11] that if an atmosphere is assumed to be isothermal with

constant temperature equal to the mean temperature, then atmospheric density varies

exponentially with dtitude. That is,

(h-h)
r(ry=rqe i

where
lo ° reference density
Hp ° scale height
h ° atitude ( r-rpianet)

hg ° reference altitude

(49)

The atmosphere is assumed to be fixed to the planet and rotates with the PCF

coordinate system about the K, axis. The following table provides the above data for

Mars and Neptune.

Parameter Mars Val ue Nept une Val ue
lo 4.7 10 *kg/ n?’ 2.348" 10 °kg/ m’
Hp 1.0° 10 m 5.331° 10° m

ho 49°10* m 0 m

Atmosphere Limit 125 km 800 km

Table 1: Atmospheric Parametersfor Marsand Neptune




E. HEATING MODEL

The thermal protection system (TPS) for a re-entry vehicle is typically sized to
sustain both the heating rate and heat load (integral of heating rate) encountered by the
spacecraft [Refs. 12, 13] These quantities take a maximum value at the stagnation point,
the point on the surface of the vehicle where the freestream velocity is brought locally to

zero. The heating rate at this point can be approximated by the Chapman equation

(50)

C
4= fr NM
where
In © vehicle nose radius
C © stagnation point heating coefficient

and N and M are constants for a given atmosphere associated with density and speed

respectively. [Ref. 14]

Par ameter Mars [Ref. 15] Neptune [Ref. 17]
C 355 10° 7.9 10°

N 0.5 0.5

M 3.15 3.0

Table2: Heating Rate Parametersfor Marsand Neptune

F. VEHICLE MODEL

The vehicle data used was obtained from [Ref. 9] for consistencies with that
author’s original work in aerocapture and is based loosely on the Mars Pathfinder shape.
Due to the high cost to flight qualify new space flight components, most re-entry heat-
shields have deviated very little since the early Viking designs. In light of this fact, the
aerodynamic data below will likely be representative of possible future aerocapture

vehicles. The aerodynamic coefficients listed below apply to Mars trajectories; lift and
2C



drag coefficients at other planets should vary primarily due to variations in each planets
atmospheric composition. Unfortunately aerodynamic data for a Neptune aerocapture
mission is not available; therefore the values for Mars will be used with the

understanding that these coefficients do not agree with the vehicle design.

Following the atmospheric pass, the vehicle will require a small impulsive DV at
apoapsis to place the vehicle in its final circular orbit. To accomplish this, a small
conventional chemical engine using a bi-propellant comprised of Hydrazine (N2H4) fuel
and Nitrogen Tetroxide (N2O4) as oxidizer is employed. This combination yields a
specific impulse of approximately 330 seconds [Ref. 13] and provides sufficient thrust
such that the DV may be considered impulsive.

Parameter Symbol Value
Vehicle Mass m 568.5 kg
Nose Radius” I'n 1m
Coefficient of Lift CL 0.3024
Coefficient of Drag Co 1.6800
Reference Area S 5.52 nt
Engine Specific Impulse I'sp 330 sec
Engine Exhaust Velocity Ve 3234 m/s

Table 3: Aerocapture Vehicle Parameters

G. NON-DIMENSIONALIZATION

The aerocapture equations of motion have been non-dimensionalized in the same
manner used by [Ref. 9] in his original work in aerocapture and are repeated here for
completeness.

* Note: This value is not the actual measure of the nose radius; rather this value is chosen to be
consistent with the stagnation point heating coefficient CinTable 3
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r

= (51)

C

dist
where U 4 © 1. » the planet’s surface radius.

\Y

V=—1v 52
0. (52)
where U, © _m , the circular velocity at the planet’ s surface.
rplanet
- t
t= 53
Utirre ( )
Udist
where U, © and
Uve|
m
m=— 54
0 (54)

where U . © m,, the vehicle'sinitial mass. Noting that the angles measured in radians

are aready conveniently non-dimensional and well scaled, Egns. (21)-(23) may be
presented in their non-dimensional form

dr .
— =Vsin 55
i g (55)
d_ﬂ _V cgsg cosy (56)
dt I cosf
d_f_ _V cosg siny (57)
dt r
The aerodynamic forces may be non-dimensionalize by first assuming that
r
r= (58)
U density
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where U 4,4, ° T, the scale density and using a non-dimensional reference area defined

as

S=_ S (59)
e Um

5
UersoUaix 5

density ™~ dist

Noting that the dynamic pressure non-dimensionalizes as

1__
quEI‘ 2 (60)

L =0,5C, (a) (61)

D=0,5C, (a) (62)

- _ D
& =-— (63)
m
_ _Lcosd
a, =—— (64)
m
L sind
a, = 65
8= (65)
The gravitational acceleration becomes
m
g=g =L ©6)
g - gr - Ugra\,
where U, © iz
planet
Eqgns. (27)-(29) become
T=3+7.+7, 67)



dy _a,+G, V _
—— = W . —cosgcosy tanf +Cf, +CT
dt Vcosg T gcosy y TR

where the centrifugal and Coriolis forces have been non-dimensionalized using

W=WuU,,
such that
cf, =W cosf (sing cosf - cosgsinf siny )
W™
V cosg

o =-

y

sinf cosf cosy

g, =2W(tangcosf siny - sinf )

cf, =£cosf (cosgcosf +singsinf siny )
v
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(72)
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V. SOLVING OPTIMAL CONTROL PROBLEMS

A. PRELIMINARIES

An optimal control problem is the task of solving for the state and control
histories of a system subject to constraints while minimizing (or maximizing) some
performance index. Put mathematically (as presented by [Ref. 18] and repeated here for

compl eteness), given a system with dynamic constraints such that
x(t)=fx,ut;p) (75)
where

X © vector of states that completely describe the systems at any t

u © vector of controls

t © independent variable (usually but not necessarily time)
p © vector of static parameters

f © vector of dynamic equations

subject to additional path constraints

g £g(x,ut)£g, (76)
g © vector path constraint equations
o] © vector of lower path bounds

Ou © vector of upper path bounds

and boundary conditions (or point constraints)

qEe(x(to),x(tf),to,tf)EeLI (77)
e © vector path event condition equations
e © vector of lower event condition bounds

e © vector of upper event condition bounds
25



aswell as bounds on states and controls

X, £x(t ) £x (78)

u £u(t )£u, (79)

in order to minimize a performance index of form

I(x(s) u()tot ) =E(x(to) x(t, ).t f)+tté)F (x(t).u(t)t)dt  (80)

E © scalar cost function evaluated at the boundary times (event cost)
F © scalar cost function evaluated over the entire time history (integral cost)

When F1 /E, the cost function is said to be in Mayer form. When E1 A, the cost
function is said to be in Lagrange form. When E, F E £ the cost function issaid to bein

Bolza form.

A mathematical construct known as the Hamiltonian may be created by adjoining

avector of Lagrange multipliers to the dynamic constraints and adding the integral cost
H(xu,l,t;p) =F(x(t),u(t)t;p)+1 " (x(t),u(t).t;p) (81)

(Note: the Lagrange multipliers associated with the dynamics are also referred to as
“costates’). The Pontryagin Minimum Principle (PMP) [Ref. 1] states that the optimal
control history satisfies

u" =argminH subjecttoul U (82)
where u” isthe optimal control and U is the domain of u.

This should be recognized as a static optimization problem at each instant of time
for which the Hamiltonian itself is now the performance index minimized. We can now
form an additional construct known as the augmented Hamiltonian (or Lagrangian of the

Hamiltonian) defined as

H (!, xut;p)=H(xu,l,t;p)+p g (x(t)ut).t;p) (83)
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The Karush-Kuhn-Tucker conditions state that when evaluated at the extremal

controls, the following are true

T
H o (84)
u
u'g=0 (85)
_i_ £0 g-=-9
l3 0 —
m i 97 % (86)
1 =0 g £g £gu
fany g =g,

where Egns. (84) and (85) are referred to as the gradient normality and complementary
conditions respectively. Eqn.(86) will be useful later for verifying the switching structure

of the controls.

B. SOLUTION METHODS

Methods for solving optimal control problems can generally be separated into two

groups, indirect and direct methods [Ref. 5 p. 85].

Indirect methods tend to produce greater accuracy and faster solution times.
However, the problem formulation for an indirect method is considerably more complex
as the user must provide additional information such as the equations for the costate
dynamics as well as the gradient of the Hamiltonian with respect to the controls.
Moreover, one must provide a reasonably accurate guess for the controls, states and
costates. Unfortunately, the abstract nature of the costates makes this guess-work

something of an art.

By contrast, direct methods tend to be much more robust and can converge to an
optimal solution even when seeded with a poor @ infeasible guess. Direct methods
require less prior work on the part of the user as the user need only supply the dynamic,
path and event constraint functions as well as the cost function. Direct methods work on
the premise that a continuous problem may be approximated through careful

discretization as a large number of point constraints, thus reducing the problem to a
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single large Nonlinear Programming problem (NLP). Unfortunately, to increase the
accuracy of the solution, greater resolution is required leading to larger problems that can

be very sow to converge.

C. DISCRETIZATION

Approximation theory tells us that the worst (with regard to minimizing the L,
error norm) discretization scheme is to sample a function at equal intervals [Ref. §].
Other methods of discretization include Hermite- Simpson and Sinc methods [Ref. 20]. In
fact, discretizing a function at the Legendre-Gauss-Labatto (LGL) points minimizes the
L, error norm for a given number of nodes. LGL points are characteristic in that they
have a higher density distribution at the end points of a function and becoming sparser in
the interior regions. By discretizing the problem in this manner, a direct solution may be

obtained with either more accuracy or less computation time.

D. DIDO

DIDO is an application package [Ref. 18] for solving dynamic optimization
problems in a friendly, easy-to-use MATLAB environment. DIDO employs a powerful
direct Legendre pseudospectra method that exploits the sparsity pattern of the discrete
Jacobian by way of the NLP solver SNOPT” [Ref. 21] and runs in both UNIX and PC

environments.

Problem formulation in DIDO is quite simple, with the user creating a set
MATLAB functions to evaluate the problem dynamics, cost, path constraints and event
conditions. These functions are tied together by an additional script which defines the
upper and lower bounds for the states, controls, path constraints and event conditions as
well astheinitial guess. This guess need not be feasible; in most cases simply providing
the estimated initial and final state value is sufficient. The simplicity of DIDO contributes
to the rapid prototyping of solutions. An experienced DIDO user can generate optimal

trajectories in days that previously would have required weeks or months.
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The user defines the number of nodes (discretization points) for the problem and

is afforded the option of “cold starting” or “bootstrapping” from a previous solution.

E. COVECTOR MAPPING THEOREM

Another advantage of the Legendre pseudospectral method is that is provides
accurate costate and covector histories despite the fact that the adjoint equation are not
supplied. [Refs. 22, 23] This power comes from the realization of the Covector Mapping
Theorem (CMT). [Ref. 21] provides the following explanation of the CMT:

The CMT may be articulated as follows: Given an optimal control
problem, P, let P" denote its Legendre pseudospectral approximation
where N is the order of the Legendre polynomial used in the
approximation. Let P' denote the boundary value problem (BVP) arising
from an application of the PMP to problen P, and P“ denote the
generalized root-finding problem obtained by applying the Karush-Kuhn-
Tucker (KKT) conditionsto problen P". The CMT asserts that if P' is

discretized by a Legendre pseudospectral method (i.e. an indirect method),
then there exists an order-preserving map between these discretized

covectors and the KKT multipliers associated with problem P . Hence,
from the KKT multipliers, one can find covectors by the direct Legendre
pseudospectral method as if one solved the problem by the indirect
method. Thisisthe CMT.

The power of the CMT s that it provides the user with excellent tools for
ascertaining the optimality of a given solution as we will see in the next section.
Additionally, because the CMT provides accurate costate information, a DIDO solution

can be uses as an ext remely high quality guess for a more accurate indirect method.

F. VERIFICATION OF OPTIMALITY

When solving optimal control problems one is often challenged as to how one can

prove optimality. [Ref. 21] discusses techniquesfor verification of optimal trajectories.



1 Feasibility

Of primal concern isthe feasibility of asolution. That is, does the solution satisfy
the dynamic constrains of the problem? To ascertain this, the initial conditions are
propagated using a Runge-Kutta algorithm (the MATLAB command ode45 which
implements the Dormand-Prince pair) using controls interpolated from the DIDO

solution. If the DIDO state history and the propagated state history match (within some
tolerance) feasibility is declared.

2. Accuracy

The next issue addresses the accuracy of the solution. Assuming the tragjectory is
feasible, the event conditions are evaluated using either the DIDO or propagated solution

and examined to verify that all event constrains are satisfied (again, within atolerance).

3. Wdl-behaved

Similarly, the solution is said to be well behaved if the path constraints (including
state and control bounds) are obeyed over the entire trgjectory. A solution that violates
the path constraints may indeed be feasible; however it does not solve the problem at
hand.

4. Optimality

Finally and most importantly, does the solution satisfy the necessary conditions
for optimality? Recalling Eqgn. (84), analytical expressions can be obtained by taking the
partial of the augmented Hamiltonian with respect to each control. In some cases, these
expressions can be rearranged into an explicit control law. Regardless, these expressions
must hold true for there to be first-order optimality. These expressions can be verified
through substitution of the states and CMT obtained costates and covectors. In the case
where the necessary conditions can be re-arranged to solve for a control, these controls
can be solved (referred to as CMT controls) and compared to DIDO solution controls.

When the DIDO and CMT controls are in agreement, first-order optimality is declared.

A second method for determining optimality is by examination of the
Hamiltonian which is also constructed by DIDO viathe CMT. Recalling again Eqn.(84),

the first integral of the necessary condition is required to be constant for Hamiltonians
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that are not explicit functions of time. Thus the Hamiltonian can be plotted and its

“flatness” used as a measure of optimality.
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V. OPTIMAL LOW THRUST PROBLEM FORMULATION

A. EVENT CONDITIONS

For the orbit transfer problem, the vehicle must begin at Earth’s orbit distance
r (tO) = r.Earth (87)

and complete the trgjectory at the target planet’ s orbital distance

r (tf ) =gt (88)

Assuming circular orbits with no ephemeris, there are an infinite number of
equivalent solutions because the Hamiltonian is invariant with the vehicle’' s angular
displacement. Thusit isconvenient to tie down the initial angular displacement to some
value.

q(t,) =0 (89)

Assuming that the vehicle escapes Earth’s SOI with zero G, the vehicle' s initial
velocity must match that of Earth. Again, assuming circular planet orbits, the equation

for abody’sradial and tangential velocities are

v, (t,) =0 (90)
=, b (91)
r.Earth

where m,, =1.327" 107 m’ 2 is the Sun’s gravitational parameter. Moreover, initid

vehicle mass must lie between the maximum capacity for the launch vehicle and some

lower design bound.

For the rendezvous case the vehicle's final velocity vector must match that of the

target planet thus

v, (t,)=0 (92)



v (t,) = [ (93)

rtarget planet

For the case of afly-by, the final velocity components would be left unconstrained.

B. COST FUNCTIONS

1. Minimum Time

To minimize time, the performance index can be constructed in either Mayer or
Lagrange form. In Mayer form, the cost function issimply

J=t, (94)

Formulated as a Lagrange cost, the performance index becomes

tf

J = gpt (95)

to

2. Minimum Fue

For a single-staged vehicle, minimizing fuel is equivalent to maximizing the final
vehicle mass. Maximizing a quantity is the same as minimizing the negative of that

guantity, thus the Mayer performance index for minimum fuel is simply
J=-m, (96)

where ny isthe final vehicle mass. Alternately this performance index may be formulated
as a Lagrange cost by recalling that the fuel flow rate for a constant specific impulse

propulsion system is given by
Mig =—— (97)
Ve

so the performance index can also be expressed as
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T
J= O o (98)

C. CONTROLS

The natural choices of controls for the low thrust problem are thrust magnitude
and thrust angle.  However, for some problems these choices lead to additional
difficulties. Bounding the thrust angle as O£h £ 2p can cause a jump discontinuity
when the optimal control history passes through the boundary. Increasing the boundsto
-2p £h £2p yields multiple values of h that are equivalent, again possibly contributing
to numerical instability of the solver algorithm.

To remedy this problem the equations of motion were altered such that the

controls are the radial and transverse thrust components as well as thrust magnitude.



Thrust Mag

A

» Sin h

cos h

Figure6: Thrust Cone

From Figure 6 clearly the thrust vector can be described by its radial and

transverse components

T, =T SiNh (99)
T, =T, Cosh (100)
and Egns. (3),(4) and (5) can be rewritten with our new controls as

— =1 4L (101)

v vvi, T

r

102
dt r m (102)
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dm_ T

i . (103)
Our control vector u is now
éT u
u=ST, | (104)
&l
where our controls are constrained within the following bounds
ST ET ET . (105)
-TETET . (106)
0 T, £ T (107)

D. STATE BOUNDS

Each state may be limited to a certain range of values over the trgectory, while
others appear unbounded. As an example, the vehicle mass over the duration of the
trgjectory may not exceed its initial mass. Assuming that the vehicle's only method of
shedding mass is via thrust, then the dry mass of the spacecraft serves as a lower bound.

Thus over the entire problem, mass is restricted to

mdry £ m £ rT1nitia| (108)

which might take a non-dimensional for of something like
A1£mMEL (109)
where the non-dimensional value for the lower bound depends on the vehicle’'s dry and
initial masses.
Other states should be bound for more practical reasons. For example, a logical

choice of bounds for heliocentric radius might be

Ofr £¥ (110)
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However, the dynamics [Egns. (2)-(4)] become singular at r =0, thus thisisa
bad choice for lower bound. Similarly, athough there is no physical reason to have an

upper bound, placing a realistic upper bound of, say, 100 reduces the search space for the
NLP solver. Thus better state bounds might be

1£T £100 (111)

where the bounds have been expressed in canonical units. For an orbit transfer to Mars
(at only 1.52 AU) this upper bound could be reduced reasonably further.

Following similar reasoning, the remaining states take non-dimensional bounds of

-10£v £10 (112)
-10£V,£10 (113)
0£q £10p (114)

Thus the state bounds can be expressed in vector format as

9.1@ (:aT@ (?100@
e u esu u
60 &y &0y
& 10U£ &YV, G£E10 G (115)
e u e_u e u
&% etu ey
ElH emyd €14

E. PATH CONSTRAINTS

As currently bound, the control space incorrectly takes the shape of a rectangular
solid. An additional constraint is needed to relate the three controls and correct the

control domain.
T +T2-T =0 (116)

In the control space ul AZ®this path constraint represents the surface of a cone.
Because the interior of the cone is not in the domain of u, the problem is not convex, thus
leading to additional difficulties with attaining a rapidly converging solution.
Interestingly, this problem can be convexified by restating the path constraint as
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Ty ET 4T - Ty  £0 (117)

which represents a solid cone. Thus physics must be violated to convexify the problem.
Fortunately, Pontryagin’s Minimum principle [Ref. 19] ensures that the optimal control
lies on the boundary of the constraint surface. In essence, physics is intentionally
violated to improve the convergence of the solution with the guarantee that the Minimum
Principle will restore continuity of physical redlity.

F. NECESSARY CONDITIONS

Recall from chapter IV that the Hamiltonian is defined
H(x,u,l,t;p) :F(x(t),u(t )t ;p)+| Tof(x(t )uft).t ;p) (118)

Assuming any Mayer cost (that isF1 4E), the Hamiltonian can be constructed as

Y, 0 a&° m T0O eVvv To eT 0
H=l,(v)+l ot st o 5 +—Satl, @ Lokl oo 22 (119)
8I’g efl r m g 8 r Mg e Voug

The augmented Hamiltonian H 'is found by adjoining the path constraints to the

above Hamiltonian as follows

: m ...
r Mg e Vg (120)

MT+mT+m T _o+m, (T2+T7-T_°)
where m, m, and m are the Lagrange multiplies associated with the control bounds
and m,is the Lagrange multiplier associated with path constraint relating the three
controls [Egn. (117)].

Applying the necessary condition for optimality by taking the partial derivative of
the augmented Hamiltonian with respect to each control we obtain the following three
necessary conditions:

H_|

=% 4 +2m.T =0 121
TlT, m njfr me! r ( )



HT

I
=—+m +2m,T, =0 122
" m m +2mqT, (122)
fH’ :-l—m+m -2m, T, =0 (123)
Mg Ve ™ 0™

These can be re-arranged to explicitly solve for the controls

= LB O (129
2Mg ém g

T LB 0 (125)
' ZmGgm "

T, =t 2 2 (126)

LS

e

The normalized equations of motion had an additional factor relating the thrust
units to the other canonical units. Thus in non-dimensional form Egns. (124)-(126)
become

" =- c=-*tm -+ (127)
2my & M r
Fo. 1 662'V‘+mr6 (128)
CTTom, Em
— 1 a4 0
mg S5——C-—-tM_ = (129)
2my ¢ Y, g
where
7= U thrustU time (130)
UdistheI
These expressions will prove useful for verification of the DIDO solutionsin the
next chapter.
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VI. OPTIMAL LOW THRUST RESULTS

A. PROCESS

The code was first validated by solving the well-known minimum time low thrust
transfer problem as presented in [Ref. 1]. With this success in hand, the parameters were
modified to better represent actual technology. It was at this time that the problems with
the origina non-dimensionaliztion scheme for thrust became apparent. Although
minimum time trajectories were acceptable, feasible minimum fuel traectories were
difficult to obtain. The problem was reformulated using the improved non-

dimensionalization scheme with better results.

In general, low thrust problems took considerably less computation time than their
aerocapture counterparts due to the fewer number of state variables and “slower”
dynamics. For this reason, solutions were generally not bootstrapped, but instead solved

completely each time from an initial guess.

B. MINIMUM TIME RENDEZVOUS

The minimum time, Mars rendezvous problem was solved for a vehicle powered
by six NSTAR ion engines providing atotal thrust capacity of 0.55 N. Theinitial vehicle
mass was fixed at the maximum lift mass (Cz of zero) for the Delta Il 7326-9.5 which
corresponds to 659.3 kg. If theinitial massis not fixed at some value, initial runs showed
that the solution would always choose the smallest initial mass available with the
minimum propellant mass necessary to complete the trajectory, essentially minimizing
the inertia the thruster must work against. Asdiscussed in Chapter V, a zero G departure
trgjectory can be modeled as beginning at the origin planet’s location, matching the
planet’ s tangential velocity and with zero radial velocity. Sixty nodes were used to solve
the problem, requiring only 4.91 minutes on a Pentium IV PC (1.8 Ghz, 512 Mb RAM).
This large number of nodes was more than sufficient to capture the details of the
tragjectory but the increased number of nodes was used to generate more aesthetically
pleasing plots. The minimum time for transfer is 182.57 days during which time the

vehicle consumes 270.2 kg of propellant for an arrival mass of 389.2 kg. Figure 7 shows
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the non-dimensional state histories versus time. The symbols represent the DIDO

solutions while the line represents the propagated solution (using the DIDO controls).

Low Thrust States: Earth to Mars
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Figure7: StateHistory (Min Timeto Mars Rendezvous)

The radius vector smoothly and asymptotically transitions from 1 AU to 1.52 AU
while the transfer angle increases amost linearly to 136.6 deg. Radia velocity increases
to amaximum of 0.35 canonical units before symmetrically returning to zero to effect the
rendezvous. Transverse velocity first dightly increases before beginning to decay
matching Mars circular velocity of 0.81 canonical units. Mass of course decreases
linearly due to the constant specific impulse and constant thrust profile as we shall see
shortly.

The heliocentric transfer orbit is shown in Figure 8 with the viewpoint from the
solar ecliptic plane north pole. Again, the circles are the DIDO trajectory and the solid
line is the propagated trgjectory. The arrows are oriented with the thrust direction and

scaled to the magnitude of the thrust vector. There is a noticeable switch approximately
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half the distance between Earth and Mars where the thrust vector swings through from
being predominantly outward to being predominantly inward. It is this change in the
radial component of the velocity vector that begins to arrest the vehicles radial velocity to

prepare it for a zero relative velocity arrival.
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Figure8: Heliocentric Trajectory (Min Timeto Mars Rendezvous)

Figure 9 shows the control history during the trajectory. The DIDO controls are
plotted as circles and the CMT derived controls are plotted as dots. The change in radial
component of the velocity vector is readily apparent in the thrust angle control history
just prior to the 100 day mark. As expected, the DIDO thrust magnitude for the
minimum time trajectory employs maximum thrust for the entire trajectory. The DIDO
controls and the CMT controls are in excellent agreement for the thrust anglealthough
they do not coincide for the thrust magnitude. Despite the CMT controls telling us
otherwise, the constant thrust solution iswell known for the minimum time problem; thus
it seems there may be an error in the way DIDO calculates costates and covectors or an
artifact specific to this problem formulation. Figure 10 gives the Hamiltonian for the
problem. Note that the variations in the Hamiltonian are on the order of 1072, that is, the
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Hamiltonian is very nearly constant. This fact, combined with the excellent agreement
between the thrust angle DIDO and CMT controls suggest that the first order necessary

conditions for optimality have been met.
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Figure9: Control History (Min Timeto Mars Rendezvous)



Hamiltonian vs Time
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Figure 10: Hamiltonian (Min Timeto Mars Rendezvous)

C. MINIMUM FUEL RENDEZVOUS

Next, the minimum fuel rendezvous was solved. The problem was set up
identically to the minimum time problem with one notable exception, the initial mass
event condition was free. As in the minimum time problem with initial mass free, the
solution chose to depart Earth with the minimum amount of mass required to complete
the journey. This is hardly in the spirit of planetary exploration, therefore the cost
function was modified to instead maximize the final mass as in Eqn. (96). Thus in this
case “minimum fuel” isabit of amisnomer; instead, minimum fuel isimplied by the true

cost, maximized final mass.

A second difficulty with minimum fuel trgjectories is that they tend to gravitate
toward extremely long trajectories in both time and path length. If both time and transfer

angle are unconstrained, the vehicle will begin the trgjectory with a very short duration
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burn which dlightly raises the aphelion of the trgjectory. The vehicle then coasts for
dightly more than a year before returning to perihelion where it again conducts a short
burn, again dightly raising aphelion. This pattern is repeated over many years until the
aphelion has finally reached the target planet’s orbital radius. These extremely long
trajectories are difficult to capture using a direct method such as DIDO due to the
comparatively few number of nodes typically used. To prevent this from occurring, the
transfer angle was bound such that only type | orbits would be permissible (atype | orbit
is an orbit with a total transfer angle between zero and 180 degrees, a type Il orbit
between 180 and 360 degrees, etc. ) That isto say

0£q(t,)£p (131)

The optimal solution presented below is comprised of 60 nodes and
required 7.85 minutes to converge. Thetotal flight time was 0.695694 years (253.4 days)
or 70 days longer than the minimum time trgectory. However only 119.1 kg of
propellant are used giving an arrival mass of 540.3 kg. Note also that the final transfer
angleis exactly p , the maximum allowable. Once again the propagated states (plotted as
lines) are in excellent agreement with the DIDO states (plotted as various symbols).

Thusthetragjectory isat aminimum feasible.
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Figure1ll: StateHistory (Min Fuel to Mars Rendezvous)

The heliocentric view of the trgjectory [ Figure 12] shows how this mass savingsis
attained. The vehicle begins by applying a near-tangential burn for approximately 40
days before shutting off. This long burn places the vehicle in a transfer orbit whose
aphelion exactly corresponds with Mars' orbit radius. The vehicle coasts along this

trgjectory until around the 220" day where it begins a shorter, sustained burn to increase

the vehicle' s speed to match that of Mars.
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Figure 12: Heliocentric Trajectory (Min Fuel to Mars Rendezvous)

The next plot shows the control history throughout the tragjectory. Againthe CMT
and DIDO controls match extremely well for the thrust angle but diverge for the thrust
magnitude control. The DIDO thrust angle control (circles) can be seen to become more
irregular in the middle portion of the trgjectory when vehicle is not thrusting. Thisis
expected as the thrust angle is not well defined without a thrust magnitude. Much more
interestingly is the fact that the CMT thrust angle control history (dots) does appear to
follow a well-defined, smooth curve even when the thrust magnitude is zero. Also note
that although the thrust magnitude CMT and DIDO controls do not agree during the
thrusting portion of the trgjectory, they do agree during the non-thrusting portion. Thusit

seems that the “switch” is only working in one direction.
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Figure 13: Control Histories (Min Fuel to Mars Rendezvous)

Let usinvestigate this discrepancy further. Recall that the necessary condition for

the thrust magnitude is

o= 1 el N 0 (132)
mag Zmd g Ve n}nﬁg -
which can be rearranged as
m_ =2T,m, +n (133)
mag V

e

Because DIDO returns both the covectors with the solution (via the CMT) we can plug
the DIDO solution states, controls and covectors into the right hand side of Egn. (133)
and check that the result matches the thrust magnitude covector as returned by DIDO. As

we can seein the following plot, the two do not agree.
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Figure 14: Comparison of DIDO and CMT Thrust Covector

We are left with two possibilities, either Eqn.(133) is incorrect, or the DIDO
supplied thrust covector isincorrect.

Despite the fact that we can not verify the DIDO controls by comparison
to the CMT, we can till verify the thrust magnitude switches by plotting the switching
function. Application of the KKT theorem tells us that

iEO Tmag:0

m, 12 0if  T=T. (134)
1=0 O0ET,,ET.,

Thisimplies that the controls switch between bounds at the zero crossings of the covector
history. Figure 15 shows the thrust magnitude profile plotted above the switching
function. The lower plot has been cropped to just either side of the x axis to better see the
zero crossings. Itisclear that the zero crossings of the lower plot coincide with the thrust

switches as shown in the upper plot.
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Figure 15: Switching Function (Min Fuel to Mars Rendezvous)

Finally, the Hamiltonian is plotted in Figure 16. Once again the Hamiltonian is
approximately constant, verifying the necessary condition (viafirst integral). Note that in
this case the value of the Hamiltonian is constant at zero. This is expected when time is

not explicitly present in the cost function.
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Figure 16: Hamiltonian (Min Fuel to Mars Rendezvous)
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VIl. OPTIMAL AEROCAPTURE PROPLEM FORMULATION

A. EVENT CONDITIONS

A spacecraft enters a planet’s SOI with a known velocity relative to the planet.
This velocity, known as arrival V-infinity (V, ) determine the shape of the trgjectory in

the planet relative frame. When V, >0 , asin the case of aerocapture, this trajectory

arrivi

will be a hyperbola with the planet at the focus. For trajectories that do not intersect the
atmosphere, the vehicle's trgjectory is Keplerian and easily solvable at any point. For an
aerocapture trajectory, the vehicle will follow such a Keplerian trgjectory from the arrival
point to the upper limit of the atmosphere, sometimes referred to as the atmospheric
interface. The atmospheric limit is defined as the altitude above the planet’s surface
below which non-conservative forces such as atmospheric drag begin to perturb the
trgectory. Thus only the atmospheric portion of the aerocapture trgjectory need be

optimized for two reasons.

= All portions of the trgjectory outside the atmosphere have closed-form
solutions that can be determined uniquely from the vehicle's velocity
vector evaluated at the atmospheric entry point (working backward to \-
infinity of arrival) and atmospheric exit point (working forward to the
apoapsis).

= Above the atmospheric limit, the controls have no affect on the trajectory

asthere are no aerodynamic forces



Atmosphere Limit
{Interface)

Figure 17: Atmospheric Entry and Exit Points

This being the case we can formulate our initial and final radius event conditions

r (to) = Letmimit (139)
r (tf ) = ratm limit (136)

As was the case with initial angular displacement in the low thrust problem, the
initial longitude is invariant. Thus it is convenient to define the initial longitude (as

defined by atmospheric entry) to be zero.

q(t,) =0 (137)



The well know vis-viva equation [Ref. 2] defines the specific energy of a body at
any point outside the atmosphere as a function of the vehicle’s inertial speed and radial
distance from the central body.

2
e=L . Il (138)
2 r
However the arrival point isdefinedasr ® ¥ so
V7o |
earriva] = azmva (139)
Due to conservation of energy,
earrival :eatm—in (140)
so substituting Eqn. (138) and (139) into Eqn. (140) we get
2 2
¥ arvival :Vatm—in - ﬂ (141)
2 2 Fem
where ram is the aimospheric limit. This can be rearranged to
V[ -VZ
Vo Vamn M _ 142
2 r

Eqgn. (142) becomes the equality constraint relating the vehicle's inertial velocity

at atmospheric entry to V, From the calculations in Appendix A, we can further

ival

relate the inertial velocity at atmospheric entry to the states as measured in the rotating

frame using

2

atm-i

=V, +1," WP cos’f , + 2rovWeosf ; cosy (cosg, (143)

where al state variables on the right-hand side are taken at atmospheric entry (initial
time, aso recal that lower-case velocity state symbols represent non -inertia

components).

Similarly, we require an event condition to ensure that the vehicle's state at
atmospheric exit is sufficient to target our desired apoapsis as show in Figure 18 below.
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Figure 18: Targeting a Circular Orbit

Again due to conservation of energy we have

Catm- ot = apo (144)
and using vis-vivawe obtain
Voo Ve
. % = % (145)
soV,,, isneeded as afunction of the state vector at atmospheric exit.
The angular momentum of a point massis given by
(146)

h=r"V =rVcos(G)
where Gisthe inertia flight path angle. Due to conservation of angular momentum
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=h (147)

atm- out apo

substituting Eqgn. (146) yields

atm ™ atm- out atm- out

eV ot COS( G- ot ) = YapVao (148)

because G=0 at the apoapsis of the transfer orbit. This can be rearranged to solve for

Vapo &8

Vo =22V, c08( Gy o) (149)

substituting (149) into (145) we get

Vatzmout 02
- ﬂ = laatm Vatm o COS(GaIm w )_ - ﬂ (150)
2 r 2& a0 g Tapo
which can be rearranged to
% § @1 10
Valz"* out - Vatm out COS( Gatm-om )I - 2me—- — 3= (151)
apo @ Fam  Tapo

giving us an equality constraint relating the states at atmospheric exit to our desired

apoapsis. Again, using the relations derived in Appendix A we can find V. and

atm- out

G, ox 8 functions of the state variables in the rotating frame using the following
relations:
2 =y, 241 *W cos’f | + 2r, v, Weosf ; cosy ;cosg, (152)
- 6
Vv, sin =
S il TSy
g\/cos g, (v +\/\/2rf2)+2vf rWeosg, cosy ; cosf =

where in this case all the state variables on the right-hand side are again taken at

atmospheric exit.

Note that these event conditions require that the apoapsis of the post-atmospheric

trgjectory exactly intersect the circular target orbit, also known as a Hohmann transfer.

57



Hohmann showed that a Hohmann transfer is the minimum-fuel transfer orbit between
co-planar orbits whose ratio of radii arelessthan 11.94 [Ref. 7]. [Ref. 24] developsthe
event conditions necessary for a bi-elliptic transfer orbit where the apoapsis of the post-
atmospheric trajectory has insufficient energy to reach the circular target orbit. Using the
same approach, one could likewise develop the event conditions for the case where the
post-atmospheric trgjectory has excess energy and overshoots the target circular orbit.

Unfortunately, these three cases (apoapsis undershoot, touching, and overshoot) can not
easily be reconciled into one set of conditions because doing so would complicate the DV
calculations in the next section, necessitating the introduction of an absolute value
operator in the rocket equation Eqn. (156). Because the derivative of the absolute value
operator is discontinuous when evaluated at zero, singularities are introduced in the
Jacobian leading to serious numerical issues in solving the NLP. [Ref. 5. For these

reasons, only the “touching” caseis considered in this work.

The event conditions can be summarized in vector form as as

é r(t,) V|

é a
. . @ q . N
latmiimit U g ) (:O) ﬂ € amiimit U
g 0 L/J é V¥ arrival ] Vatm_ in + m u g O l:I
e u % - e u
¢ 0 ue§ 2 fam Uge 0 4 (154)
e u = e u
ératmllmlt [] ? r (tf ) u ératmlimitfj
A ’ e u A e
e H é\/z x8 0 &1 1 &0 g H

é am-out an Va[m- out COS(Gatm- out)i - 2m - _Il.,l

e grapo %] Fam  Tapo A

where V.. .. and G, .. are given by Egns. (152) and (153).

B. COST FUNCTIONS

1. Minimum Fud to Circularize

The smplest performance index for aerocapture is to minimize the fuel required to
circularize the orbit. Since the event conditions require the post-atmospheric trajectory’s
apoapsis exactly touch the target circular orbit, the deltaV can be obtained by subtracting
the apoapsis velocity found using Eqgn. (149) from the target circular orbit velocity
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V., = |— (155)

such that

DV =V, - Vo, (156)

With the deltaV known, the rocket equation

& »lD; o}
My =My Cl- € ' (157)
%)

can be used to find the propellant mass required to circularize the orbit. Thus our
performance index can be expressed in Mayer form as

J=m (158)

prop circ

2. Minimum Heat L oad

Knowing that there exists some relation between the total heat load and the
required TPS mass, another reasonable performance index is to minimize the heat load.
As one recalls, heat load is the integrated heating rate over the trgjectory (Egn. (50)) ;

thus a natural choiceisto use aLagrange form cost function such as

tt

J=M(r,y o (159)

%)

However any Lagrange cost can be re-written as a Mayer cost through the
addition of a state in the equations of motion. In this case, we could add heat load as a

state, with dynamics given by Eqgn. (50).

3. Minimum Aerocapture Mass

A more useful performance index would to minimize the total mass associated
with aerocapture. The total aerocapture mass can be broken into three components, heat
shield mass (also known as fore-shield mass), back-shell mass, and the propellant mass

required to circularize the orbit.



macap = n]weatshield + rrEack—shell + mprop (160)

The propellant mass to circularize can be found using Egn. (157). The mass o
the back-shell can be assumed to be relatively constant over alarge range of heat. Thus a
method is needed for determining the mass of the heat shield.

A first-order approximation for heat shield mass can be made by linearly mapping
heat load to heat shield mass. Thermal anaysis of the heat loads expected to be
encountered by Mars Smart Lander require an approximate heat shield mass of 40 kg for
every 10,000 Joules of heat load [Ref. 25]. Using this single data point and assuming a
20% margin, a crude mapping between heat load and heat shield mass can be expressed

as
tt
Myesniag = KOA it (161)
to

where k = 50kg )
10,000J

Since the back-shield mass is assumed to be constant, it can be neglected from the

performance index. A minimum aerocapture mass performance index can now be written

in Bolzaform as

tt

J=m._ + kd‘q dt (162)

prop
to

It should be stressed that a much more accurate model could be obtained by
mapping the heat shield mass to both heat load and peak heating rate. However, the
addition of the peak heating rate term would require the cost function to be formulated as

a Chebyshev minimax problem which is beyond the scope of this proof-of-concept.
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C. CONTROLS

For non-thrusting, fixed angle-of-attack aerocapture trajectories, the only control
during the atmospheric passis the bank angle of the spacecraft. Asinthelow thrust case,
coding the control as an angle and bounding it as O£d £2p leads to some difficulties
due to the jump discontinuity between O and 2. As shown in later sections, the optimal
bank angle history generally switches between p and 20 (or zero). Opening the control
boundto O£d £ 3p alowsfor optimal bank angles that are entirely interior. However as
in the low thrust case it was eventually realized that using sind and cosd as controls

tended to yield faster and more consistently reliable solutions. Thus we have

gésind ()
u=a ¢ 163
&cosd | (163)
where our controls are bound by
-1£sind£1 (164)
-1£cosd £1 (165)

As in the low thrust case, this formulation of the controls requires the addition of
apath constraint (given in the next section).

An alternate control scheme incorporates the bank angle as a state variable of the
vehicle and instead controls the bank angle. This alows for more realistic command

response behavior. However, this scheme was not incorporated into this work.

D. STATE BOUNDS

Next suitable choices must be made to bound the states. Since only the
atmospheric portion of the trajectory is of concern, there is no point in allowing the radius
to be any larger than the atmospheric limit. Similarly, the vehicle has a hard lower

bound at the planet’ s surface. Considering thisyields

r £ErfEr

planet atmos-limit

(166)

However, recalling Egn. (49), the atmospheric model is only valid to the scale
height below which the exponential atmosphere incorrectly decreases with decreasing

atitude. Thus a better set of boundsis
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+hyEr £r (167)

r planet atmos-limit

Realizing that for a non-thrusting vehicle entering the atmosphere, the maximum
speed will be near that at atmospheric interface. To account for the unlikely event of
extremely steep entries the upper bound can be set to some arbitrary small multiple of the
initial velocity.

O£ vVESLy

atmos- in

(168)

Note however that Egns. (25), (26), (31), (33) have singularitiesat v=0. This can be

resoled by constraining the problem as

e EVEV

atmos- in (169)
where e, is number dightly larger than zero.

Note that equations Eqns. (22), (25), (31) also have singularities at f =+p and
g=1p. We can prevent the singularities from being encountered by bounding these

states as
-p +e £f £p -¢, (170)
-p+e, £ gEpP - g (171)
where again € and g, are small numbers greater than zero.

Finally consider longitude and heading angle. Since there are no singularities or
physical bounds to contend with we are free to choose any convenient set of bounds
sufficiently large to reduce the NLP search space. Note however that in both cases

0£ & UE 2p (172)
&

is a poor choice. While we as humans intuitively know that these variables are
continuous across these bounds, the dynamics are blind to this fact and instead see this as

adiscontinuity. This discontinuity can be resolved by simply opening the bounds

62



-2p £§§£2p (173)

The bounds for the compl ete state vector can be summarized as

érplanet + ho@ ér g g‘atmos-limit l;l
é u é ua é a
e P g die® g
€-p+e, U &0 €ep-eg U
é uteé uté U (174)
é e, u éV U évatmos-in u
é . u &a é p U
e P adge® g
e-P+e g el éP-& g

E. PATH CONSTRAINTS

The control space in ul A? defined by Ens. (164) and (165) is the area of a
square. A path constraint is needed to correct this control space to that of acircle. This

is accomplished using the trigonometric identity

sin®d +cos’d - 1=0 (175)

However this control surface leads to a convexity problem. Using the same
techniqgue employed for the low thrust control, the path constraint is modified to an
inequality constraint

-1£sin’d +cos’d - 1£0 (176)

This transforms the control space to a circular disc of unit radius which is a
convex surface. Again, this temporary violation of physics will be resolved by the
Minimum Principle which forces the controls to the boundary of the control space, in this
case, onto the unit circle.

Other path constraints of potential importance to the mission designer are limiting
maximum dynamic pressure, load-factor or heating-rate as given by Eqgns. (37), (42) and
(50) respectively.



F. NECESSARY CONDITIONS

Assuming a Mayer cost (F1 /), the Hamiltonian for the aerocapture problem is

H =1, (vsing) + 2/c0sgcosy 6 aycosgsiny 0.
8 r cosf 5 T P

+]| V&iE_ gs|ng+cfvg
& m o

a77)
elsind v 0
+l - —cosgcosy tanf +cf, +cq =
8mvcosg r a
l ad_cosd gcosy L Veosg cf, +co, o}
€ mv Y r s

Note that all of the aerocapture Lagrange costs are pure state costs meaning that they are
not function of the controls. Since the partial of the augmented Hamiltonian will be taken
in a moment, the assumption of a Mayer cost does not impact the formulation of the

necessary conditions.

The augmented Hamiltonian is

Hi = 2Lsnd ey & c0sd O+n!dsmd

Y&nvcosgg ‘& MV g (178)
+my, cosd +m, (Sl n’d +cos’d - 1)+ pure state terms

where all the pure-state terms have been grouped together and where m,, m, and m,
are the Lagrange multipliers associated with the two controls and the path constraint
relating them respectively [Eqgn. (176)].

Applying the necessary condition for optimality by taking the partial derivative of
the augmented Hamiltonian with respect to each control we obtain

Mm _ L
f(sind) ~ mvcosg

+my, +2mysind =0 (179)

([ R A
f(cosd) nv

+m, +2my cosd =0 (180)

which can be re-arranged to solve for the controls
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sind=- — - My (181)
2mvim, cosg  2m,

L
cosd =- —9¢—_ Ml (182)
2mvmy - 2my
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VIIl. OPTIMAL AEROCAPTURE RESULTS

A. PROCESS

Problems were solved beginning with easier problem formulations before moving
on to more challenging cost functions and higher fidelity. Solutions were obtained for
non-rotating planets with fixed initial conditions and minimum fuel to circularize as the
performance index. Next minimum heat-load trajectories were solved before attempting
rotating atmospheres. With these successes in hand, the initial conditions were relaxed
such that the velocity at atmospheric entry need only agree with the arrival \+infinity.
This allowed for solutions with excess \tinfinity at arrival to be obtained. Finally, the

solution for minimum total aerocapture mass was obtained.

B. MINIMUM AEROCAPTURE MASS AT MARS WITH ZERO ARRIVAL
V-INFINITY

This case considered a vehicle arriving at a rotating Mars with zero excess
velocity with minimum total aerocapture mass as the performance index. This initia
arrival condition could occur in the case of alow thrust heliocentric trajectory whereby

the interplanetary trgjectory is arendezvous.

Although only 30 nodes were necessary to obtain asolution, using 50 nodes
greatly increased the accuracy of the solution. The resulting performance index
breskdown isgiven in Table 4. The total aerocapture mass (minus back-shell mass which
is assumed constant) isonly 19.14 kg. Thislow value can be attributed to poor modeling
(poor choice for k) in Egn. (161) as well as the low heat loads experienced due to the

zero V-infinity at arrival.

Propellant mass 10.63 kg
Front-shield mass 85 kg
Total 19.14 kg

Table4: Cost Function Breakdown (Zero Arrival V-inf)
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Even taking these factors into account, the optimal aerocapture mass is of
significant savings when compared to the required mass for a pure propulsive injection
maneuver. Using the same main engine and bi-propellant modeled for the post-
aerocapture circularization maneuver, the required propellant mass for the pure-
propellant capture is 201.44 kg. Figure 19 shows the altitude, latitude and longitude
histories during the atmospheric portion of the trajectory. The circles represent the DIDO
solutions at the node points, whereas the line represents the Runga-Kutta propagated
solution (note the strong agreement between the two indicating feasibility). As
constrained, the tragjectory begins and ends at the defined atmospheric interface of 125
km. The minimum altitude of 70.14 km occurs at the 2.65 minute mark of the 12.24
minute trajectory. Note that the initial latitude solution for the pass is very nearly zero
(0.7 deg) and that the trgjectory proceeds easterly.
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Figure19: Position History (Zero Arrival V-inf)

Figure 20 shows the result of propagating the trajectory beyond the atmospheric

interface. The spacecraft proceeds to an altitude of 295.4 km, only 4.7 km in error of the
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targeted altitude. Thiserror is attributed to the error in the final states at atmospheric and
will be discussed more fully ahead.
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Figure 20: Propagated to Apoapsis (Zero Arrival V-inf)

The velocity state histories are given in Figure 21 and demonstrate the
“backwards-S curve” in speed characteristic to aerocapture trajectories. The trajectory
begins with an inertial speed of 4949.3 m/s and a relatively shallow flight path angle of
-7.4 deg. The initial heading is only -0.09 deg, agreeing with the due easterly track in.
Taken together, it is clear that the optimal solution isto fly in the direction of the rotating
atmosphere at location of the atmosphere’s greatest velocity (the equator). This
trajectory gives the minimum relative speed between the atmosphere and the vehicle, thus
reducing the heating-rate which is proportional to VM. It isinteresting to note that even
when the problem is seeded with a westerly-tracking guess, DIDO still returns an easterly
optimal solution. The inertial velocity at atmospheric exit is 3523.5 m/s for a total
aerocapture delta'VV of 1425.8 m/s.
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Figure21: Velocity History (Zero Arrival V-inf)

The accuracy of the solution can be evaluated by comparing the DIDO termina
states with those from the propagator as shown in Table 5. The fact that the altitude
indeed hits its target value (the only explicitly constrained final state) demonstrates the
accuracy of the solution. The error that remains is likely due to these errors being less
than the tolerances set in DIDO, thus causing the solver to exit. Furthermore, radius, not
atitude isthe actual state vector used in the solution. Redefining the equations of motion
to use dtitude as a state instead may allow for increased accuracy.
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State DIDO value Propagator value | Absolute Error Percent Error
Hs 125 km 124.52 km -0.4762 km 0.3824 %
O 44.68 deg 44.67 deg -0.0111 deg 0.0248 %
f i 0.11 deg 0.11 deg 0.0005 deg 0.4335 %
Vi 3274.5 m/s 3272.7 m/s -1.8559 m/s 0.0567 %
Y 0.09 deg 0.09 deg 0.0011 deg 1.2560 %
O 2.02 deg 1.98 deg -0.0328 deg 1.6523 %

Table5: Propagated Accuracy (Zero Arrival V-inf)

Figure 22 shows the optimal bank angle history during the aerocapture pass. The
blue circles represent the DIDO solution controls, whereas the red dots represent the
CMT derived controls evaluated using Egns. (181) and (182). For the bulk of the
tragjectory, the bank angle takes one of two approximate values, 0 deg (lift-up) or 180 deg
(lift-down). This choice of extreme controls often occursin optimal control solutions. At
some points, the DIDO control solution actually oscillates between -180 deg and 180 deg
which of course are equivalent. The same controls have been shifted to lie between
O0£d £2p in Figure 23 to reduce this numerical irregularity. Again, note the excellent
agreement between the DIDO solution controls and the CMT controls. The only
significant divergence between the two occurs late in the problem when the vehicle is
near its slowest and highest portion of the trgectory. In this energy state, the
performance index is of greatly reduced sensitivity to the control (in other words, these
errors are unimportant to the solution.) This agreement verifies that the first-order
necessary conditions have been met strengthening the argument that the solution is at
least alocal minimum. Furthermore, the flatness of the Hamiltonian in Figure 24 proves
verification of thefirst integral further contributing to the claim of optimality.
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Figure22: DIDO and CMT Controls (Zero Arrival V-inf)
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The bank angle “switch” occurs at approximately 3.2 minutes, fully 30 seconds
after minimum altitude passage. A possible explanation for this switching strategy is as
follows. a steep, lift-up entry trgjectory allows for deep atmospheric penetration with
positive curvature. Once the “corner has been turned” at nadir and the velocity stateis
such that atmospheric exit is guaranteed, the vehicle flips lift-down essentially “clinging”
to the atmosphere. This extends the time within the atmosphere but on the slower side of

the minimum altitude where the heating rate penalty is less severe.
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Figure 24: Hamiltonian (Zero Arrival V-inf)

The heating rate over the trgjectory is given in Figure 25. The peak heating rate
of 7.44 W/cn? occurs at 140.18 sec (2.34 min). The total heat load was calculated as
1700.38 Jcnt from the heating rate history using a trapezoidal integration scheme
(MATLAB’s“trapz’ command).
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Figure 25: Heating rate (Zero Arrival V-inf)

The following figures show the time history of the body accelerations resolved in
the Frenet frame and shows the total acceleration peaking at -0.85 g's at time 158.94 sec
(2.65 min), the vast mgjority of which isin the anti-tangential direction with small normal
and bi-normal components. Not surprisingly, the peak dynamic pressure (shown in
Figure 28) of 505.71 Pa occurs at the same time (recall from Eqgn. (38) that the tangential
acceleration is a function of drag and mass only).
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Body Accelerations
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Figure 26: Body Accelerations (Zero Arrival V-inf)
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Dynamic Pressure vs Time
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Figure 28: Dynamic Pressure (Zero Arrival V-inf)

Finally, selected orbit elements are plotted versus time in Figure 29. One can see
that the non-dimensional specific energy drops from zero energy (recall that the vehicle
begins with zero arrival V-infinity) and that the eccentricity begins at a parabolic value of
one before decaying to a near-circular value of 0.04 at atmospheric exit. The apoapsis
begins at positive infinity (as it is singular for a parabola) and decays to a non-
dimensional value corresponding to 300.0 km.
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Orbit Paramters (Non-Dimensional)
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Figure 29: Selected Orbit Parameters (Zero Arrival V-inf)

C. MINIMUM AEROCAPTURE MASS AT MARS WITH EXCESS
ARRIVAL V-INFINITY

This case considered a vehicle arriving at a rotating Mars with an excess velocity
with minimum total aerocapture mass as the performance index. In this case, the initial
arrival velocity is5.2 km/s. Thisroughly equates to the arrival velocity expected from an

impulsive Hohman transfer between Earth and Mars.

The solution given below was obtained using the solution from Section B above
and bootstrapping up by increments of 10 nodes until a satisfactory solution was obtained
with 90 nodes. The cost breakdown for this solution is given in Table 6. Although this
trajectory only requires one kilogram more of propellant, the required heat shield massis

dlightly more than double the amount required for the zero arrival V-infinity solution. As
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shall be seen, this is due to the significantly higher thermal loads placed on the vehicle
during the atmospheric pass.

Propellant mass 11.81 kg
Front-shield mass 16.94 kg
Total 28.75 kg

Table6: Cost Function Breakdown (Excess Arrival V-inf)

For this case, the cost savings when compared to a pure-propulsive capture are
even more significant with the pure-propulsive capture requiring a whopping 386.4 kg.
Figure 30 shows the altitude, latitude and longitude histories during the atmospheric
portion of the trajectory. Note once again the strong agreement between the DIDO state
history and the propagated solution. The minimum altitude of 58.5 km occurs 94.63 sec
(2.58 min) into the 601.02 sec (10.02 min) trgjectory. Again the optimal solution begins

near zero latitude and tracks easterly with the rotating atmosphere.
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Figure 30: Position History (Excess Arrival V-inf)

Figure 31 shows the continued propagation beyond the atmospheric exit point. In
this case the propagated apoapsis reaches only 277.28 km, 22.72 km short of the targeted
300 km altitude. Thiserror islikely due altitude error at atmospheric interface (discussed
shortly) magnified with time.
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Figure 31: Propagating to Apoapsis (Excess Arrival V-inf)

Figure 32 gives the velocity state histories with an inertial entry velocity of
7178.8 km/s and initia inertial flight path angle of -10.47 deg. The exit velocity is
3517.1 km/s for asignificant deltaV of 3661.8 m/s.
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Figure 32: Velocity History (Excess Arrival V-inf)

As shown in Figure 33, this solution’s altitude trgjectory begins with a steeper
flight path angle and penetrates deeper into the atmosphere than the slower, zero arrival
V-infinity solution. Note that although it penetrates deeper, the time of passage is
significantly shorter. As we shall soon see, this contributes to a larger, but narrower
heating-rate pulse which helps to reduce the total heat |oad.
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Altitude vs. Time Comparison
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Figure 33: Altitude Profile Comparison (Excess Arrival V-inf)

The accuracy and feasibility of the solution is shown in the following table. The
error between the propagated solution and the DIDO solution is small enough to declare
convergence. Note that although the final flight path angle has a large percentage error,
the absolute error is less that 0.1 deg. Because the final value of the flight path is itself
small, this makes the error appear large.
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State DIDO value Propagator value | Absolute Error Percent Error
Hs 125 km 123.67 km -1.3323 km 1.0773%
ol 39.42 deg 39.39 deg -0.0301 deg 0.0763 %
f i 0.20 deg 0.20 deg 0.0011 deg 0.0763 %
Vi 3268.11 m/s 3262.32 m/s -5.7845 m/s 0.1773 %
Y -0.53 deg -0.53 deg 0.0001 deg 0.0270 %
O 2.35 deg 2.25 deg -0.0989 deg 4.3985 %

Table7: Propagated Accuracy (Excess Arrival V-inf)

The bank control history is given in Figure 34. The “bank-bang” nature of the

control can be seen as the vehicle begins the trgjectory lift-up before abruptly switching

to lift-down at approximately 1.8 minutes. Again, the DIDO solution can be seen

flipping back and forth between +180 and -180 which are of course equivalent. Both the

switch as well as the agreement between the DIDO controls and the CMT controls is

more prevalent in this case likely do to the significantly larger number of nodes in the

solution. Once again this satisfies the first order necessary conditions for optimality.

Again the switch occurs after (but closer to) minimum altitude passage by approximately
13 seconds. The optimality of the solution is further supported by the constancy of the

first integral in Figure 35 (that is to say the flatness of the Hamiltonian to the 10°?).
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The heating rate at the stagnation point is given in the following figure. The peak
heating rate of 35.02 W/cn? occurs at time 72.76 sec (1.21 min) and the total heat load is
3388.37 Jicnt — amost double the value for the earlier non-rotating case. As mentioned
previously, the duration of the heat pulse is quite short, less than a minute as measured at
the half-maximum point. This contrasts with the non-rotating case where the half-

maximum pulse width was approximately three minutes in duration.
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Figure 36: Stagnation Point Heating Rate (Excess Arrival V-inf)

The body accelerations are significantly stronger than those experienced in
the previous case [Ref. Figure 37]. The tangential acceleration peaks at -4.59's
while the normal accelerations peak at 0.82 g's. The total acceleration peaks at
457 g'sat time 79.78 sec (1.33 min) [Figure 38]. Again, this corresponds exactly
to the dynamic pressure peak of 2703.70 Pa[Figure 39].
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Figure 37: Body Accederations (Excess Arrival V-inf)
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Dynamic Pressure vs Time
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Figure 39: Dynamic Pressure (Excess Arrival V-inf)

The orbit parameters in the following figure are slightly more interesting
than in the previous case. With this solution, the non-dimensional energy can be
seen to begin well above zero, with capture occurring at 110.50 sec (1.84 min).
The eccentricity decays from a hyperbolic 3.16 to a near-circular 0.04. Also the
fact that apoapsis is undefined for parabolic trajectories is demonstrated as the
apoapsis departs toward negative infinity to the left of the singularity before
rapidly falling off from positive infinity immediately following the capture.
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Orbit Paramters (Non-Dimensional)
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Figure40: Selected Orbit Parameters (Excess Arrival V-inf)

D. MINIMUM AEROCAPTURE MASS AT NEPTUNE WITH EXCESS
ARRIVAL V-INFINITY

The next case considered a minimum total aerocapture mass at Neptune with
excess arrival \-infinity. The arrival V-infinity at Neptune was 9.42 km/s, significantly
higher than that of Mars. A higher atitude of 1000 km was targeted for the final circular
orbit and the atmospheric interface was defined as an atitude of 800 km.

The problem was solved by first solving the zero excess arrival trgjectory for a
non-rotating atmosphere. This solution was used to bootstrap the excess arrival velocity
which was in-turn used to bootstrap the case of a rotating atmosphere. 90 nodes were
deemed sufficient to provide an accurate, optimal solution. Table 8 gives the cost
function breakdown for this solution. The total required aerocapture mass is 328 kg of
which 48.4 kg is propellant mass and 279.5 kg is heat shield mass. While significantly
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higher than the aerocapture mass required at Mars, the total capture mass is 200 kg less

than the 528.7 kg of propellant required for a purely propulsive capture maneuver.
Again, the accuracy of the heat shield mass predictions is limited to the model used,

which assumes heat shield mass scales linearly with heat |oad.

Propellant mass 484 kg
Front-shield mass 2795 kg
Tota 328.0 kg

Table8: Cost Function Breakdown (Neptune Excess V-inf)

Figure 41 shows the position history of the spacecraft during the atmospheric
portion of the trgjectory. Note the excellent agreement between DIDO solution (circles)
and the propagated solution (solid line). The trgjectory begins and ends at 800 km of
atitude (the defined atmospheric interface). The total pass requires 22.64 minutes with a
minimum altitude of 256.5 km occurring 4.16 minutes into the trgjectory. Again the

solver chooses an initia latitude of nearly O degrees (equatorial) with an easterly track.
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Figure4l: Postion History (Neptune Excess V-inf)

Figure 42 shows the result of propagating the DIDO solution beyond the
atmospheric limit of the solution. The propagated apoapsis of 976.12 km is within 23.9
km of the targeted 1000 km apoapsis altitude.
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Figure 43 gives the velocity state histories for the Neptune solution. The
trajectory begins at a staggering inertial atmospheric entry speed of nearly 25000 m/s, a

flight path angle of -9.35 degrees, and heading -0.1 degrees (due east).
atmospheric exit occurs at 16144 m/s for an aerocapture delta-V of 8844 m/s.
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The accuracy of the solution is presented in Table 9 which compares the DIDO

and propagated terminal state values. Note that the “large”’ percentage errors in latitude

and flight path angle are due to the small absolute value of the state.

State DIDO value Propagator value | Absolute Error Percent Error
Hs 800 km 793.07 km -6.9257 km 0.8733%

ar 48.32 deg 48.31 deg -0.0116 deg 0.0241 %

fe -0.00 deg -0.00 deg -0.0007 deg 19.5726 %

Vi 13736.80 m/s 13732.23 m/s -4.5689 m/s 0.0333 %

Y i 0.64 deg 0.64 deg -0.0007 deg 0.1067 %

o 1.51 deg 1.46 deg -0.0495 deg 3.3939 %

Table9: Propagated Accuracy (Neptune Excess V-inf)
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The control history for the trgectory is presented in Figure 44. The DIDO
solution for the first minute and last nine minutes appears somewhat erratic.
Investigating this further, the covectors associated with the controls over these time
intervals are of very small value, indicating alack of sensitivity of the performance index
to the bank angle in these regions. This corresponds with the physical explanation of
reduced control effectiveness in the thinner upper limits of the atmosphere. In the
thicker, lower atmosphere, the bank angle trajectory assumes the previously seen, lift-
up/lift-down “bang-bang” type control with the switch occurring at approximately 5.5
minutes, dlightly after the minimum altitude point. The DIDO controls (circles) and the

CMT derived controls (dots) are again in excellent agreement.
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Figure44:. DIDO and CMT Control History (Neptune Excess V-inf)

The thicker atmosphere and significantly atmospheric velocities contribute to
extreme stagnation point heating for this trgectory. The maximum heating rate of
264.59 W/cm? occurs just prior to the minimum altitude point (Figure 45). The long time



duration of the pass results in a total heat load of 55,904 Jcn? driving up the mass

requirements for the TPS.
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Figure45: Stagnation Point Heating Rate (Neptune Excess V-inf)

Thermal protection is not the only engineering challenge presented by aerocapture
at Neptune. The large aerodynamic forces lead to a peak total acceleration of 5.83 g
(Figure 46). These high loads more akin to those experienced by fighter aircraft would
require additional structural mass, further reducing available payload mass. This

additional mass cost is not included in the modeling of this work.
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Figure46: Total Acceleration (Neptune Excess V-inf)

E. MINIMUM AEROCAPTURE MASSAT MARSSUBJECT TO G-LIMITS

The previous results at Neptune demonstrate the potential for high g-loads during
aerocapture maneuvers. Rather than increasing the structural integrity of the spacecraft
to survive the loads, another option is to simply constrain the glimit to some smaller,
more manageable value. The following solution shows partial results for the problem
described by VIII.C (Minimum total aerocapture mass at Mars with excess arrival
velocity) except that the tangential acceleration has been limited to 3 g. A 120 node
solution was obtained by bootstrapping from the unconstrained solution results. The
trajectories were similar with the constrained trajectory being slightly shallower (initial
flight path angle of -9.73 degrees compared with -10.47) and longer in duration (total
pass time of 11.4 minutes compared with 10.02 minutes). The position state histories are
presented in Figure 47. The minimum altitude varies by only 3.5 km but occurs almost

30 seconds later than the unconstrained case.
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Figure47. Position History (G-limited)

The velocity histories ae nearly identical, with a deltaVV within 4 m/s of the
unconstrained case. The only notable differences are some slight perturbations in the
flight path angle and heading angle between times 1.5 minutes and 2.5 minutes during
which time the spacecraft perforns a bank maneuver to reduce the loads on the vehicle.
A plot of bank angle versus time (Figure 49) shows this maneuver in greater detail. As
before, the bank angle begins lift-up until approximately 1.4 minutes into the tragjectory.
At that time the vehicle banks instantaneously to lift-down for 30 seconds before
switching back to lift-up for another 20 seconds. Finadly, the bank angle switches lift-

down for the remainder of the trgjectory.
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The first bank angle reversal is clearly reducing the tangentia loads on the
vehicle, as shown in the following plots of body accelerations. The first lift-down
segment corresponds exactly to the time interval for which tangential acceleration is
nearly constant at the constrained 3-g limit. This maneuver shows corresponding
switches in the normal and bi-normal accelerations, coincident with the bank angle
maneuvers. The second bank angle correction is more intriguing as it occurs after the
tangential loads are decreasing in magnitude. This maneuver seems to be adding a slight
increase in flight path angle to offset the period in which the flight path angle was
relatively constant while lift-down (Figure 48).
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Figure50: Acceleration Histories (G-limited)

The activation of the g-limit constraint can be further verified by examination of
the covector associated with the constraint that is provided by DIDO. Figure 51 clearly

shows that the constraint becomes active over the time period of the first bank reversal
maneuver.
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Figure51: G-limit Constraint Covector History

The heating rate is less than the unconstrained case, pesking at 30.39 Jcnt
(unconstrained value of 35.02 Jcnf) but the total heat load is higher at 3814.6 W/cn?
(unconstrained value of 3388.4 W/cn?). This is consistent with shallower trajectories
which tend to have longer but smaller heat pulses. This higher heat load contributes to a
dightly higher performance index as total heat load is mapped to heat shield mass in our
model. The total aerocapture mass increases from 2875 kg to 30.2 kg (Table 10).

Propellant mass 11.13 kg
Front-shield mass 19.07 kg
Totd 30.20 kg

Table 10: Cost Function Breakdown (G-limited)



F. MAXIMUM AEROCAPTURE CORRIDOR SUBJECT TO HEATING
RATE CONSTRAINT

One of the difficulties with implementation of the aerocapture concept is the
precision with which the spacecraft must guided to atmospheric interface. Aerocapture
corridors are typically quite narrow, measuring only a couple degrees. The upper limit
(that is to say shallowest angle) is normally defined as the shallowest initial flight path
angle for which a lift-down bank angle profile will successfully meet the terminal
conditions [Ref 9]. Similarly the lower limit is defined as the initial flight path angle for
which a lift-up bank angle profile will meet the terminal conditions. Some preliminary
work was done in investigating whether an optimal bank angle strategy can increase the

aerocapture corridor width.

The maximum aerocapture corridor problem was solved by separately solving two
related problems. maximum initial flight path angle and minimum initial flight path
angle; respectively:

J=-0, (183)
=g, (184)

The difference between the minimum and maximum initial flight path angle is then the
maximum corridor width. In addition, both solutions were subject to heating-rate
constraints. Note that it is important that the initial conditions for each problem be the
same so that the resultant trgjectories can be fairly compared. In fact, if thisis not done,
the optimal solution for the two problems differ in initial heading by 180 degrees!
Instead the minimum initial flight path angle solution was generated first, and its initial
condition was used to constrain the initial maximum flight path angle case. Moreover,
with no constraint on the final orbit inclination, the optimal solutions placed the vehicle
in an equatorial orbit - not very desirable from a scientific point of view. However, for
the equatorial case, the corridor-defining optimal bank profiles were constant lift-up or
constant lift-down as per the assumption in the definition. This turned out to not be the

case for trgjectories with final inclinations other than zero.
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Additional solutions were generated with a constraint on the final orbit inclination
of the vehicle. Recalling that upper-case Greek letters represent the components of the
velocity vector resolved in the inertial frame, the inclination of the vehicle is related to
the aircraft states by:

cosi =cosF , cosY (185)

The maximum heat rate was set at 50 W/cnt and the targeted inclination was arbitrarily
chosen to be 70 degrees such that

cos(70deg) £ cosF , cosY ; £ cos(70deg) (186)

Relevant parameters for the two trajectories that bound the maximum corridor are
presented in Table 11.
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Minimum Initial FPA

Maximum Initial FPA

Initial Flight Path Angle -10.83 deg -8.66 deg
Initial V-infinity 5200 m/s 5200 m/s
Initial Latitude 17.6 deg 17.6 deg
Initial Heading -73.4 deg -73.46 deg
DeltaV 37435 m/s 3662.4 m/s
Total Pass Time 5.87 min 11.82 min
Minimum Altitude 56.32 km 66.52 km
Max Dynamic Pressure 3298.44 Pa 1354.9 Pa
Max Total Acceleration 5579 2299

Max Heating Rate 39.76 W/cn? 27.67 W/cn?
Hest Load 3138.83 J¢ 4612.22 Jent
Front-shield Mass 15.69 kg 23.06 kg
Post-Aerocapture Propellant | 26.41 kg 11.91 kg
Total Aerocapture Mass 42.1 kg 34.97 kg

Table11: Max Corridor Boundary Comparison

Figure 52 is a plot of the position state histories for the two trgjectories (circles

for the shallower trgjectory.
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represent the maximum flight path angle entry while the plus symbols represent the
minimum flight path angle entry). The trgjectories begin at atmospheric interface at the
optimal latitude of 17.6 degrees. The minimum flight path angle trgectory is steep
(-10.83 deg), with only 5.87 minutes of total pass time compared with 11.82 minutes for
the shallow maximum flight path angle case (-8.66 deg). The steeper trajectory naturally
penetrates deeper into the atmosphere to an atitude of 56.32 km as compared with 66.52
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Figure52: Max Corridor Position Histories

The velocity histories are given in Figure 53. The total deltaV for the two
trajectories are nearly equal at about 3703 m/s +/- 40 m/s.
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The control histories for the trgjectories are given in the following figure. CMT
control histories were plotted in lieu of the DIDO solutions as they better demonstrated
the arctangent characteristic of the bank angle schedule. Clearly the optimal bank angle
profiles are not simply lift-up or lift-down as was the case for equatorial target orbits.
The steep flight path begins lift-up and modul ates to approximately 60 degrees during the
ascent. In a like manner, the shallower entry begins lift-down and modulates to
approximately 94 deg during the ascent. In neither case does the lift vector cross the
horizontal plane; instead the lift vector seems to be used to control depth of penetration
prior to the minimum altitude before switching to control heading (and hence target
inclination) for the ascent.
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Figure54: Max Corridor Control Histories

As expected, the peak heating rate for the steep entry is significantly higher than
the shallow entry (39.76 W/cn? as compared to 27.67 W/cnr) athough the shallower
trajectory has the higher heat load (4,612 Jcnf compared with 3138 Jcnt) (Figure 55).
Note that the peak heating rate was below the constraint value of 50 W/cn?

104



Stagnation Point Heating
40 ¥ MaR Feating Rate F 39.76 Wicm 2 I
-+ o Maxg
-+ 0
35 "+ Total Heat | oad|= 3138.83 J/icmP + Ming,
+.
-‘_
30 -t
Max Heating Rate = 27.67 Wicrm?2
+t o o
25 o ToTal FHeat Tioad = 461222 e
+ b
~ 0 + |o
§ 20—o 5
= +0 +1 4
¢}
15 o +
= A 5
+0 o
40 + o
105 t 2
_S) + %
‘b + Q
+ Co
5 4 N
00000
Od OOOOOO
AT 000090000000
0 L0 VRIS |
0 2 4 6 8 10 12
Time (min)

Figure55: Max Corridor Heating Rates

Dynamic Pressure vs Time
3500 T
4 ax Dynamic Pregssure = 3298.44 Pa o Max 9%
++ 4+  Min 9
3000 =
+.
+ +
2500
g vt
]
52000 3=
2]
3 +
T H
2 1500 m +
g P, Max Dynamic Pressure = 1354.90 Pa
[9)
> o 0O
a + oo
1000 o o
+ t o
o} 4 OO
+ 0 + 0q
500 O + 4
+0 t “0g
(o] OOO
? OOOC OOOOOO
S R [s]6 a]e]( Tavala'a'a'a s = =V="2Y Semeaue it W
0 2 4 6 8 10 12
Time (min)

Figure56: Max Corridor Dynamic Pressures

10=



The peak dynamic pressure (Figure 56) of the steep trgjectory is more than double
that of the shallow tragjectory (3298 Pa compared with 1,355 Pa) which leads to a similar
disparity in peak total accelerations (Figure 57). The steep entry encounters a crushing
5.57 g peak acceleration whereas the shalow entry peaks at a more manageable 2.29 g.
Figure 58 resolves the aerodynamic accelerations into flight-path related components.
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Figure57: Max Corridor Total Accelerations
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Figure58: Max Corridor Acceleration Components

The significant differences in characteristics of the trgectories which define the
boundaries of the maximum aerocapture corridor illustrate the difficulties imposed upon
the design team. To utilize the entire available corridor, the vehicle's structure must be
sized to the more dynamic, steep boundary trgjectory while the TPS mass must be sized
for the larger heat loads of the shallow entry. Additionally, the TPS materia selection
will be dependent on the maximum heating rate of the steep tragjectory.
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IX. FORMULATING THE COMBINED LOW THRUST AND
AEROCAPTURE PROBLEM

Previous chapters detail the problem formulation for both low thrust and
aerocapture trgjectories taken separately. The attention is now turned to the problem of
solving for the low thrust trajectory that terminates with an aerocapture maneuver. One
approach for generating feasible integrated trajectories is to optimize the low thrust
trgectory using its final state to derive the initial state for an optimal aerocapture pass.
However, this formulation is not optimizing the problem from end to end. To find the

true integrated optimal solution, we must simultaneously solve both trajectories.

A. JUNCTION CONDITIONS

Recall that a direct, discreet solution method reduces an optimal control problem
to a series of dynamic constraints sampled at various nodes (times). Thus, the state

history for alow thrust problem can be expressed as a matrix such as

gr(to) r(t) r(tj)g
gq(tO) aq(t) - q(tj)g
24 (t) v.(t) - v, (t])ﬂ (187)
o (t) w(t) )
gm(t;) m(t) - miy)d

Where the columns represent the values of the states at each node time and were|

is the index corresponding to the fina node of the low thrust solution. Similarly for

aerocapture
ér(t) r(t) r(t)u
%Eto; qgﬁ; q((tkgg
@f L) Tt f(t u
v(t) vit) - V(L) (188)
§ () yt) vt
o) o) -~ ot)y



where k represents the final node index of the trajectory.

If these two state history matrices were of the same dimension, they could be
augmented forming a combined state history for the entire problem. However, note that
the low thrust state history matrix has one less row (state) than the aerocapture matrix.

This can be resolved by simply adding a“dummy variable” to the last row of the matrix.

er(t) () o r()
gq(to) q(t) - (tj)u
g () v () - r(t')ﬂ (189)
gvt(tO) Vt(tl) Vt(tl)ﬂ
gm(to) m(t,) m(t])ﬂ
&C cC - C g

Our combined state history matrix now takes the desired form of a 6 by (+k)
matrix with the final column of the low thrust trgjectory occurring at index j and the first

column of the aerocapture trgjectory beginning with  column j+1.

gr (t) r(t) - r (ti ) r (tj+1) r (ti+k) ﬂ
&) aft) a(t) aft.) Q(tj+k)g
g’r (to) Vi (tl) oV (tj) f (tj+1) f (tj+k)g
St W) - () Vi) - vit.)d 0
gm t) mt) - m tj) y (ti+1) y (ti+k)8
g C c - C 9(t1+1) 9(%«)8

However, we now must somehow match the physical meaning of the end of the
low thrust trgjectory with that of the beginning of the aerocapture trgectory. As
formulated, the states take on very different meanings in the two portions of the problem.
For example, the 8" row of the low thrust portion represents the vehicle’'s mass while in
the aerocapture portion that same row represents heading angle. Thus we need some
junction conditions to relate the variables on the two sides of the problem.
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First, recall from previous chapters that the initial final radius of the low thrust
portion and the initial radius of the aerocapture problem are fixed. That is

r(t) = "o (191)

r (t21) = oot (192)

Final velocities for the low thrust portion are left unconstrained to allow for non-
rendezvous (excess arrival V-infinity) trgjectories to be generated. The vehicle mass at

the end of the low thrust portion remains subject to the physical limitation that
my, £ m(tj) £m(t,) (193)

Although mass is not a state for the aerocapture segment, its value is needed for
the dynamics calculations. Assuming that there isno post low thrust staging thisyields

maerocapture = m(tj ) (194)

Since vehicle mass at arrival is on the same order as the initial vehicle mass at
launch, there conveniently is no need rescale the problem as the normalizing units of

mass may be chosen to be the same for both trajectory segments.

Recall that for convenience the initial longitude of the aerocapture trajectory was

set to zero so
q(t,.,) =0 (195)

Similarly the initial velocity states of the aerocapture problem can be related in

some manner to the terminal conditions of the low thrust problem.

Vi = £ (v () )ove (6)7 (60) F (t0) 0 (t1)) (196)
Y ja=1 (Vr (t) v (t;). 7 (ta) o (60) ’g(tm)) (197)
0= £ (% (t) (1)1 (1) 1 (1) 0 (1)) (198)
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To see exactly how these are related, the \-infinity of arrival for the aerocapture
problem must be found. The heliocentric inertial velocity of the vehicle is give by the

vector equation

|

{ vehicle}sun :{\7p|anet}Sun +{\7vehicle} leret (199)

which can be rearranged to find the inertial velocity of the vehicle relative to the planer

{\Z/ehicle} = {\7vehicle} an {\7p|anet} an (200)

planet

With respect to the variables used in the low thrust portion, the velocity vector of
the vehicle with respect to the sunis

{\7vehic|e} o g\\/lz Q (201)

and the circular velocity of the planet is given by

{ planet} an

(202)

11
Do D D D
—
o
S| ©
m =)
conoNonoy

Thus the velocity of the vehicle relative to the planet can be expressed as

¢ u

J =< u
{ vehicle} planet - eV _ My, [_,j (203)

u

u

planet

The magnitude of this vector is

- &e , 0
H{Vvehicle} planet =V¥am\,a| = \/Vrz + évtz - rnlu;n : (204)
planet 9

The sguare root term leads to possibility of a singularity so it is more convenient to use

the square of the V-infinity at arrival given as

=) v (6) - s (205)
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At this point, the inertial arrival velocity magnitude in the planet frame at the
beginning of the aerocapture tragjectory is known. Given the small size of the target
planet relative to the scale of the heliocentric trajectory, small course corrections far from
the target planet allow for any point on the Bplane to be targeted (the Bplane is a
reference plane used for interplanetary targeting). This means that the initia latitude,
longitude, velocity, heading and flight path angle sates for the aerocapture problem is are
essentially free, provided they al ke values that are consistent with the arrival V-
infinity.

Using vis-viva, the magnitude of the velocity vector at the atmospheric interface

(where we begin the aerocapture trgjectory) is related to the arrival V-infinity.
-VZ2
Sana e, M g (206)

Again referring to Appendix A, the velocity components in a rotating REN frame
may be related to the arrival V-infinity, thus we can now relate the V-infinity as
calculated from the final states of the low thrust trajectory to the initial states of the

aerocapture trgjectory as

||V¥arrivaJ (ti )"2 = V(tj+1)2+ r (ti+1)2V\/2 cos’ f (tj+1)

(207)
+2r (tj+l)v(tj+l)Wcosf (tj+1)cosy (tm)cosg(tjﬂ)

Substituting Egn. (205) into the above equation yields the following important junction

condition
2 x® 2 rTLJ O 2 2VV2 SZ
() o) - [ WS )

+2r (tj+l)v(tj+l)Wcosf (tm) cosy (tjﬂ)cosg(tjﬂ)
However, recall that not only were the states different between the two
formulations, but they were scaled markedly different as well. This can be resolved

through the addition of a constant conversion factor
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) v () - [T S e §

g g ( )% Ud|st _aerocapture gJ
+2T(tj+1) (tJﬂ)Wcosf (,+1)cosy (,+1)C059(J+1)

) ) )

Egns. (191)-(193), (195), and (209) complete the junction conditions for the

combined problem.

B. COST FUNCTIONS
1. Minimum Total Propellant

A relatively simple to implement performance index for the combined problem is
to minimize the total propellant required for the mission. This can be accomplished
despite the propellants being of different types with different Isp. This combined
propellant cost can be expressed in Mayer form as

J=-(m (210)

proplowthrust + mprop circ)

where m is the propellant mass consumed during the low thrust portion of the

proplowthrust

trajectory as given by

mproplowthrust = m(tj ) - m(tO) (211)
and m, ... isthe mass of propellant needed to circularize the post-aerocapture transfer
orbit.

2. Maximum Scientific Mass

The total maximum scientific mass at arrival can found by taking the total
propellant cost above and adding to it the estimated mass of the heat shield. Using the
same mapping between heat load and front-shield mass used in chapters VII and VIII this

can be expressed as a Bolza cost as follows
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J=- (m) - mproplowthrust - mpropcirc) +k (‘)q at (212)

ti
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X. SOLUTIONSTO THE COMBINED LOW THRUST AND
AEROCAPTURE PROBLEM

A. MINIMUM TOTAL FUEL SOLUTION

The minimum total fuel solution was obtained using 40 nodes of resolution for
each segment of the trgectory. Obtaining feasible trgectories proved rather difficult.
Increasing the thrust capacity of the low thrust vehicle helped to obtain solutions at the
expense of realism. In addition, the rotation of the target planet was set to zero to simplify
the solution and reduce computation time. This was accomplished by simply assuming
that the vehicle employed 10 NSTAR engines. As show in Figure 59 (where again the
circles are the DIDO solution and the solid line is the propagated trajectory) the trajectory
begins with zero G and a 700 kg vehicle and arrives at 1.52 AU 291 days after launch.
In the process, 61.58 kg of propellant are consumed for an arrival mass at Mars of
638.42 kg. The close agreement between the DIDO solution and the propagated solution
verify the feasibility of the solution.
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Low Thrust States: Earth to Mars
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Figure59: Low Thrust State Histories (Min Total Fuel)
The heliocentric trgectory is shown in Figure 60. An initia burn of
approximately 48 days increases the semi-major axis of the transfer orbit until the

aphelion intersects Mars' s orbit. The small deviations between the DIDO and propagated
solutions are more visible in this presentation.
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Low Thrust: Earth to Mars
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Figure 60: Heliocentric Low Thrust Trajectory (Min Total Fuel)

The vehicle arives at Mars with an inertia arrival V-infinity of 2626.2 m/s and a
relatively shallow flight path angle of -7.62 degrees. Note that thisisarelatively shallow
flight path angle but the correspondingly small arrival \tinfinity ensures that the vehicle
will not “skip” off the atmosphere. Figure 61 and Figure 62 depict the vehicles states for
the aerocapture portion of the trgectory. A minimum altitude of 70 km is reached 3
minutes into the 13.65 minute trgectory. The pass yields a total deltaV of 2078 m/s.
Again the DIDO solution and the propagated solution are in excellent agreement. The
transfer orbit is highly circular with an eccentricity of only 0.03. This contributes to the

low propellant mass required to circularize of only 12.1 kg.
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Figure61: Aerocapture Position States (Min Total Fuel)
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Figure 62: Aerocapture Velocity States (Min Total Fuel)

12C



The bank angle history is given in Figure 63. Unfortunately, current versions of
DIDO do not return the covectors for problems with internal knots such as this one
making verification difficult. For this reason, the CMT controls can not be shown for

comparison. Similarly the Hamiltonian is not available for verification of the first
integral.
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Figure 63. Aerocapture Control History (Min Total Fuel)

Figure 64 gives the heating rate over the trgjectory. The peak heating rate of 12.2
W/cm? occurs 2.14 minutes into the trajectory and the total heat load is 3054.3 Jcnt.

Using 50 kg of TPS mass per 10,000 Jcnf of heat load, this corresponds to
approximately 15.3 kg of front-shield mass.
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Figure64. AerocaptureHeating Rate (Min Total Fuel)

Unfortunately, DIDO does not currently return covectors for problems with
interior knots such as this mixed-dynamics problem. Without the covectors or
Hamiltonian, verification of the optimality of the solution is more difficult. In principle,
the interior event conditions of the mixed-dynamic problem could be used to formulate
two optimization problems, essentially breaking the problem back into its parts. Each
optimal control problem could then be solved, and the covectors and Hamiltonians
exploited to determine optimality. The optimality of the combined problem could then be
declared if each individual problem was optimal on its own and each solution state and
control history matched that of the combined solution. This verification was not

performed in thiswork due to lack of time.
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B. MAXIMUM SCIENTIFIC MASS

The maximum scientific mass cost function added further difficultiesin obtaining
a solution. Simply changing the cost function yielded infeasible solutions. Unlike the
minimum total fuel case, increasing the vehicle thrust did not resolve this issue. To
obtain a solution, a hypothetical target planet with the properties of Mars was placed at
5.2 AU. Like the minimum total fuel case, the problem was solved for a non-rotating
target atmosphere. Even with these changes, solutions for high numbers of nodes became
numerically unstable and yielded infeasible solutions. The solution presented below was
obtained using 120 nodes for the low thrust segment and 50 nodes for the aerocapture
segment. The state histories for this solution are given in Figure 65. The vehicle begins
with a zero G and initial mass of 660 kg and arrives at Mars with 487 kg consuming 173
kg of propellant. The total trip time is 1187.4 days. The DIDO low thrust state histories
are in excellent agreement with the propagated states.

Low Thrust States: Earth to 5 AU
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Figure65: Low Thrust State Histories (Maximum Scientific M ass)
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Figure 66 shows the heliocentric trajectory for the low thrust portion. Again, the
vehicle conducts a long continuous burn for 175 days before shutting off and coasting
with just enough energy to reach 5.2 AU.

Low Thrust: Earth to 5 AU
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Figure 66: Heliocentric Low Thrust Transfer Orbit (Max Scientific M ass)

Figure 67 shows the control histories for the low thrust segment of the mission.
The lower plot shows the normalized thrust history with distinct thrust switch at
approximately 175 days. The thrust angle is approximately zero during the thrusting
portion of the tragjectory. The remainder of the thrust angle history may be disregarded as

it isof course meaningless when thrust magnitude is zero.
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Figure67: Low Thrust Control Histories (Max Scientific M ass)

The aerocapture state histories are show in Figure 68 and Figure 69. The

trajectory begins with an inertial V-infinity at arrival of 5211 m/s and a flight path angle

of arrival of -10.1 degrees. The fact that the initia \infinity is not zero demonstrates

that the globa solution is minimizing low thrust propellant at the expense of more

efficient thermal energy dissipation during the aerocapture segment. The initial heading

of -95.6 degrees is due to the non-rotating atmosphere which causes the cost function to
be invariant with latitude and heading angle. Theinertial deltaV for the passis 3668 m/s

and terminates in an orbit with an eccentricity of 0.04. Capture occurs at 1.87 minutes.

Unlike the low thrust trgjectories, the DIDO solutions do not correspond as well with the

propagated states, particularly with the radius state. It islikely that increasing the number

of nodes for this segment would lead to better convergence between the DIDO and

propagated solutions.
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Figure 68. Aerocapture Position States (M ax Scientific M ass)
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Figure 69: Aerocapture Velocity States (M ax Scientific M ass)
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The bank angle control history is shown in Figure 70 below. As in the pure
aerocapture optimizations investigated earlier, the bank angle begins approximately lift
up before switching at approximately 1.9 minutes to lift down. Again, the chatter in the
early history of the control is due to the lack of aerodynamic control authority high in the
atmosphere and would be expected to be smoothed with higher-node solutions.
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Figure 70: Bank Angle History (Max Scientific M ass)

Fgure 71 shows the heating rate history during the atmospheric pass. The
maximum stagnation point heating of 34.2 W/cn? occurs at 1.24 minutes and the total
heat load is 3586.59 Jcnf. Using the TPS mass model discussed previously, this
corresponds to a front-shield mass of 17.93 kg. Combined with the 9.83 kg of propellant
required to circularize the orbit, the total aerocapture mass is 27.7 kg. This compares

with 331 kg that would be required for a pure propulsive capture at the target planet.
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Figure 71. Aerocapture Heating Rate (Max Scientific M ass)
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Xl. CONCLUSIONS

The suitability of the direct pseudospectral method for solving highly non-linear
astrodynamic problems has been explored. For low thrust problems, the method has been
shown to produce excellent results, particularly for minimum time problems. However
unknown factors cause low thrust minimum fuel solutions to be more difficult to
consistently obtain. The method was particularly successful in solving optimal

aerocapture trajectories over arange of conditions.

The suitability of the direct method for simultaneously solving a combined low
thrust tragjectory with terminal aerocapture was also explored. Although the fidelity of the
models was reduced to obtain feasible solutions, the proof-of-concept is considered a
success as it successfully found feasible solutions for the combined trajectories. This
concept of simultaneously optimizing trajectory segments with vastly different dynamics
has the potential to identify previously unexplored trajectory combinations and further

research in thisareais strongly suggested.
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Xll. FUTURE WORK

Due to the proof-of-concept nature of this work, there are numerous areas for
which future work is encouraged. For low thrust problems, launch vehicle optimization
can be added allowing for design trades between initidl mass and initial C3. More
realistic tragjectories may be obtained by exploring 3DOF as well as non-circular target
orbits. Additionally, adding the gravitational effects of additional bodies may allow for
the exploitation of gravity assists and further mass savings. Finaly, the difficulties with

obtaining certain low thrust minimum fuel trajectories should be further investigated.

For aerocapture, a more accurate TPS mass model should be developed such that
both the heat load and the peak heating rate are taken into account. Furthermore, the
benefits of angle of attack modulation during aerocapture as well as thrusting arcs may
yield new families of trgectories and should be explored. Additionally, other cost

functions such as minimum altitude may be useful for such missions as sample return.

Finally, this initial work solving mixed dynamic optimization problems may be
expanded in many areas. To obtain any solutions at all, the fidelity was considerably
reduced. Hopefully many of the problems with the combined trgjectories will be rectified
when the difficulties with the minimum fuel trajectories discussed above are resolved.
Lastly, with future versions of DIDO, users should be able to recover the covectors for

problems with interior knots, allowing for the verification of the DIDO trajectories.
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APPENDIX A: USEFUL TRANSFORMATIONS

A. COORDINATE TRANSFORMATIONS

The following transformations are useful for moving between various aerocapture

frames.

1 Spherical to Inertial

First rotate about K by q, then Y' by -f .

ée U éosf 0 -sinfuécosy sing Ouél U
% H:g 0 1 0 32 snq cosq 03233 (213)
&l gsinf 0 cosf gg O 0 1géKd
which simplifies to
€ U écosqcosf  singcosf  sinf uél U
% H: g - §nq cosq 0 ngg (214)
& @&cosgsinf -singsinf cosf BEKY
2. REN Frameto Frenet Frame
First rotate about f byy , then rotate aboutf ' by - g.
eenu écosg - sing O@§1 0 0 uee,u
&, Uu_é&, ué
&&= smg cosg OOéO cosy siny uée\q U (215)

€.t 80 0 14€0 -siny cosy & f
which simplifiesto

eq1u écosg - singcosy - singsiny uequ

gesﬂ esmg Cosg cosy cosgsiny ue%u (216)
g 60 - siny cosy gggH

which can be inverted to
ee u € cosg sng 0 ueehu
géqﬂ & singcosy cosgcoy - siny 3253 (217)
@H g singsiny cosgsiny cosy pEe,H
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which can be inverted to

él U écosqoosf -sing - cosqsinf ueer U
é-u é

@‘19 asing cosf cosq - snqsnf ueequ
&KH g snf 0 cosf A& H

3. PCF to PCI Veocity

(218)

Recall that Vpg is the inertial velocity vector and Vpcr is the velocity vector in

the rotating frame. The transport theorem states
Voo = Voo 4PCl o PCF - |
But the angular rate of the rotating frame is given by
PCI o) PCF

=WK =sinf e+cosf @

The positions vector in spherical coordinatesis simply

{r}g=re

The can be transformed from REN to spherical by
é cosg sing 0 wé&l
{Veer} o = g singcosy cosgcosy - siny ﬂgvﬂ
g singsiny cosgsiny cosy HEOH

which gives

{VF,CF}rqf =vsing & +Vvcosgcosy € +vcosgsiny &

so substituting into Egn. (219) resultsin

¢ving ul & § g
{ PC,} gv cosgcosy Urlwsinf 0 Weosf
gvcosgsiny g r 0 0

which simplifiesto

{Vea},, =vsing € +(vcosgcosy +rWeosf )g +vcosgsiny &
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This gives the spherical inertial velocity components V,, V, , and V in terms of
the velocity vector in the rotating REN frame.
{V.}., =vsing
{V,} .o =Vvcosgcosy +rWeosf (226)

{\/f } hg = VCOSQ siny

We can now obtain the velocity components in the inertial REN frame by squaring both
sides of Egn. (225) to get

Vear | = V2 +r2WP cos?f +2rwicosf cosy cosg (227)
so theinertial speed in the REN frameis
Voo = Jvz + W cos’f +2rvWecosf cosy cosg (228)
Recalling Figure 3
=<V
Y © dtang—-- (229)
V
(SR N|
and
& 0
Ge atan §———-* (230)
&y ;q A
Substituting Egns. (226) into (229) and (230) we get
Y = atanae VCosg siny 9 (231)
Evcosg cosy +rWecosf g
and
& vsin
G=atan© g (232)

Q- - O:

g\/coszg (v2 +Wr 2)+ 2vrWcosg cosy cosf
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Thus Egns (228), (231), and (232) give us the inertia velocity components
resolved in the REN frame as functions of the position and velocity components as
measured in the rotating REN frame.
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APPENDIX B: MINIMUM AEROCAPTURE MASSAT MARS
FROM ZERO ARRIVAL V-INFINITY DATA

Data Summary:

Inertial Velocity Conponents:

Arrival Vinfinity (ms): 0. 00

At nospheric Entry:

Speed (n's): 4949. 30
Headi ng (deg): -0.09
Fl'ight Path Angle (deg): -7.44

At nospheric Exit:

Speed (nis): 3523.53
Headi ng (deg): 0.08
Flight Path Angle (deg): 1.87
Delta-V (n's): 1425. 77

Rotating Vel ocity Conponents:

At mospheric Entry:

Speed (nis): 4702. 36
Headi ng (deg): -0.09
Flight Path Angle (deg): -7.83

At nospheric Exit:

Speed (mi's): 3274.53
Headi ng (deg): 0.09
Fl'ight Path Angle (deg): 2.02
Delta-V (n's): 1427.83

Trajectory Analysis:
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Total Pass Tine:
M ninum Al titude (km:
Tine to Mn At:

Max Dynamic Pressure (Pa):

Ti me of Max Dynamic Pressure:

Max Accel eration: (gQ)

Time of Max Accel eration:
Max Heating Rate: (Wcmt2)
Time of Max Heating Rate:

Heat Load: (J/cnf2)

Final Obit Parameters:
Semi-maj or Axis (km:
Periapsis (km:

Apoapsi s (kn):
Apoapsis Altitude (km:

Eccentricity:

Capture Tine:

Total Aerocapture Mass (kg):

734.40 sec (12.24 mn)
70. 14

158.94 sec (2.65 nin)
505. 71

158. 94 sec (2.65 nin)
0. 85

158.94 sec (2.65 nin)
7.44

140. 18 sec (2.34 min)

1700. 38

3563. 65
3437. 39
3689. 92
300. 00

0.04

0.00 sec (0.00 min)

Propellant Mass to Circularize After Aerocapture (kg):

Esti mated Front-shield mass (kg):

Pure Propul sive insertion:

I'sp = 330. 000000

Propel l ant Mass (kg): 201.442991
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APPENDIX C: MINIMUM AEROCAPTURE MASSAT MARS
FROM EXCESSARRIVAL V-INFINITY DATA

Data Summary:

Inertial Velocity Conponents:

Arrival Vinfinity (nms): 5200. 00

At nospheric Entry:

Speed (nis): 7178. 83
Headi ng (deg): -0.15
Fl'ight Path Angle (deg): - 10. 47

At nospheric Exit:

Speed (nis): 3517. 05
Headi ng (deg): 0. 27
Flight Path Angle (deg): 2.18
Delta-V (ns): 3661. 78

Rotating Vel ocity Conponents:

At nospheric Entry:

Speed (nis): 6933. 98
Headi ng (deg): -0.15
Flight Path Angle (deg): -10.85

At nospheric Exit:

Speed (mi's): 3268. 11
Headi ng (deg): 0.29
Fl'ight Path Angle (deg): 2.35
Delta-V (n's): 3665. 88

Trajectory Analysis:
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Total Pass Tine:
M ninum Al titude (km:
Tine to Mn Alt:

Max Dynam ¢ Pressure (Pa):

Time of Max Dynamic Pressure:

Max Accel eration: (gQ)
Time of Max Accel eration:
Max Heating Rate: (Wcnt2)
Time of Max Heating Rate:

Heat Load: (J/cmt2)

Final Obit Parameters:
Semi-maj or Axis (km:
Periapsis (km:

Apoapsi s (kn):
Apoapsis Altitude (km:

Eccentricity:

Capture Tine:

Total Aerocapture Mass (kg):

601. 02 sec (10.02 mn)
58.51

94.63 sec (1.58 nin)
2703.70

79.78 sec (1.33 mn)
4.57

79.78 sec (1.33 mn)
35.02

72.76 sec (1.21 nin)

3388. 37

3550. 25
3410. 57
3689. 92
300. 00

0.04

110.50 sec (1.84 nin)

Propellant Mass to Circularize After Aerocapture (kg):

Esti mated Front-shield nass (kg):

Pure Propul sive insertion:

I'sp = 330. 000000

Propel l ant Mass (kg): 386.401888
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APPENDIX D: MINIMUM AEROCAPTURE MASSAT MARS
FROM EXCESSARRIVAL V-INFINITY DATA

Data Summary:

Inertial Velocity Conponents:

Arrival Vinfinity (ms): 9419. 99

At nospheric Entry:

Speed (m's): 24987. 43
Headi ng (deg): -0.08
Fl'ight Path Angle (deg): -9.35

At nospheric Exit:

Speed (ni's): 16143. 37
Headi ng (deg): 0.54
Flight Path Angle (deg): 1.28
Delta-V (n's): 8844. 06

Rotating Vel ocity Conponents:

At nospheric Entry:

Speed (nm's): 22615. 43
Headi ng (deg): -0.08
Flight Path Angle (deg): -10.34

At nospheric Exit:

Speed (nis): 13736. 80
Headi ng (deg): 0. 64
Fl'ight Path Angle (deg): 1.51
Delta-V (n's): 8878. 62

Trajectory Analysis:
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Total Pass Tine: 1358. 47 sec (22.64 min)

M ninum Al titude (km: 256. 46
Time to Mn Al t: 249.75 sec (4.16 mn)
Max Dynam ¢ Pressure (Pa): 3451. 29

Time of Max Dynam c Pressure: 231.55 sec (3.86 mn)

Max Accel eration: (gQ) 5.83

Time of Max Accel eration: 231.55 sec (3.86 mn)
Max Heating Rate: (Wcnt2) 264. 59

Time of Max Heating Rate: 213.90 sec (3.56 min)
Heat Load: (J/cm2) 55903. 98

Final Orbit Paraneters:

Sem -maj or Axis (knm): 24757. 55

Periapsis (km: 23891. 11

Apoapsis (km: 25624. 00

Apoapsis Altitude (kmn: 1000. 00

Eccentricity: 0. 03

Capture Tine: 213.90 sec (3.56 nmin)

Total Aerocapture Mass (kg): 327.98

Propel lant Mass to Grcul arize After Aerocapture (kg): 48.40

Esti mated Front-shield nass (kg): 279.52

Pure Propul sive insertion:

I'sp = 330. 000000

Propel l ant Mass (kg): 528.735021
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APPENDIX D: MINIMUM AEROCAPTURE MASSAT MARS
WITH G-LIMITS

Data Summary:

Inertial Velocity Conponents:

Arrival Vinfinity (nms): 5199. 99

At nospheric Entry:

Speed (n's): 7178. 82
Headi ng (deg): -0.09
Fl'ight Path Angle (deg): -9.73

At nospheric Exit:

Speed (nis): 3520. 80
Headi ng (deg): -0.29
Flight Path Angle (deg): 2.01
Delta-V (n's): 3658. 02

Rotating Vel ocity Conponents:

At nospheric Entry:

Speed (nis): 6933. 39
Headi ng (deg): -0.09
Flight Path Angle (deg): - 10. 07

At nospheric Exit:

Speed (mi's): 3271.83
Headi ng (deg): -0.32
Fl'ight Path Angle (deg): 2.16
Delta-V (n's): 3661. 56

Trajectory Analysis:
Total Pass Tine: 684.58 sec (11.41 mn)
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Mnimum Al titude (km:
Tine to Mn Alt:

Max Dynam c Pressure (Pa):

Time of Max Dynam c Pressure:

Max Accel eration: (g)
Time of Max Accel eration:
Max Heating Rate: (Wcnf2)
Time of Max Heating Rate:

Heat Load: (J/cmt2)

Final Obit Parameters:
Sem -mgj or Axis (km:
Periapsis (km:
Apoapsi s (km:
Apoapsis Altitude (km:

Eccentricity:

Capture Tine:

Total Aerocapture Mass (kg):

Propellant Mass to Crcul arize After Aerocapture (kg):

61. 98

122. 65 sec (2.04 nin)
1803. 97

96. 30 sec (1.61 mn)
3.05

96.30 sec (1.61 nin)
30. 39

78.32 sec (1.31 nin)

3814. 61

3557. 99
3426. 09
3689. 90
299. 98

0.04

136. 75 sec (2.28 nin)

Estinmated Front-shield mass (kg):

Pure Propul sive insertion:

I'sp = 330. 000000

Propel | ant Mass (kg): 386.401510
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APPENDIX E: MAXIMUM INITIAL FLIGHT PATH ANGLE FOR
AEROCAPTURE AT MARS

Data Summary:

Inertial Velocity Conponents:

Arrival Vinfinity (nms): 5200. 00

At nospheric Entry:

Speed (n's): 7178. 83
Headi ng (deg): - 73.46
Fl'ight Path Angle (deg): -8.65

At nospheric Exit:

Speed (ni's): 3516. 46
Headi ng (deg): - 66. 33
Flight Path Angle (deg): 2.21
Delta-V (n's): 3662. 37

Rotating Vel ocity Conponents:

At nospheric Entry:

Speed (nis): 7115.54
Headi ng (deg): -75.32
Flight Path Angle (deg): -8.73

At nospheric Exit:

Speed (mi's): 3436. 81
Headi ng (deg): -69. 58
Fl'ight Path Angle (deg): 2.26
Delta-V (n's): 3678. 72

Trajectory Analysis:

Total Pass Tine: 708.99 sec (11.82 nmin)
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Mnimum Al titude (km:
Tine to Mn Alt:

Max Dynam c Pressure (Pa):

Time of Max Dynam c Pressure:

Max Accel eration: (g)
Time of Max Accel eration:
Max Heating Rate: (Wcnf2)
Time of Max Heating Rate:
Heat Load: (J/cmt2)
Final Obit Paraneters:
Sem -major Axis (knj:
Periapsis (km:

Apoapsi s (km:

Apoapsis Altitude (km:

Eccentricity:

Capture Tine:
Final Inclination:

Total Aerocapture Mass (kg):

Propellant Mass to Circularize After Aerocapture (kg):

66. 52

149. 76 sec (2.50 nmin)
1354. 90

114. 93 sec (1.92 nin)
2.29

114.93 sec (1.92 nin)
27.67

91.29 sec (1.52 nin)

4612. 22

3549. 02
3408. 13
3689. 92
300. 00

0.04

178.05 sec (2.97 nin)

70.00 deg

Esti mated Front-shield mass (kg):

Pure Propul sive insertion:
I'sp = 330. 000000

Propel I ant Mass (kg):

386. 401888
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APPENDIX F: MINIMUM INITIAL FLIGHT PATH ANGLE FOR
AEROCAPTURE AT MARS

Data Summary:

Inertial Velocity Conponents:

Arrival Vinfinity (nms): 5200. 00

At nospheric Entry:

Speed (n's): 7178. 83
Headi ng (deg): -73.40
Fl'ight Path Angle (deg): -10. 83

At nospheric Exit:

Speed (nis): 3435. 29
Headi ng (deg): - 69. 85
Flight Path Angle (deg): 4. 60
Delta-V (n's): 3743. 54

Rotating Velocity Conponents:

At nospheric Entry:

Speed (nis): 7115. 88
Headi ng (deg): -75.27
Flight Path Angle (deg): -10.93

At nospheric Exit:

Speed (mi's): 3358. 39
Headi ng (deg): -73.83
Fli ght Path Angle (deg): 4.71
Delta-V (n's): 3757. 48

Trajectory Analysis:
Total Pass Tine: 352. 25 sec (5.87 nin)
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Mnimum Al titude (km:
Tine to Mn Alt:

Max Dynam ¢ Pressure (Pa):

Time of Max Dynam c Pressure:

Max Accel eration: (g)
Time of Max Accel eration:
Max Heating Rate: (Wcnf2)
Time of Max Heating Rate:

Heat Load: (J/cmt2)

Final Obit Parameters:
Sem -mgj or Axis (km):
Periapsis (km:
Apoapsi s (km:
Apoapsis Altitude (km:

Eccentricity:

Capture Tine:

Final Inclination:

Total Aerocapture Mass (kg):

Propellant Mass to Circularize After Aerocapture (kg):

56. 32

93. 33 sec

3298. 44

78.99 sec

5.57

78.99 sec

39.76

65. 53 sec

3138. 83

3391. 27

3092. 61

3689. 92

300. 00

0.09

(1.56

(1.32

(1.32

(1.09

m n)

m n)

m n)

m n)

98. 27 sec (1.64 nin)

70.00 deg

Estimated Front-shield mass (kg):

Pure Propul sive insertion:

I'sp = 330. 000000

Propel l ant Mass (kg): 386.401889
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